thực hiện phép tính
a) 2x+6/3x^2-x : x^2+3x/1-3x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(3x-1)2 -7(x2+2)= 9x^2-6x+1-7x^2-28x-28= 2x^2-34x-27
xin !
Bài 1 .
\(a,3x^2-6x=3x\left(x-2\right)\)
\(b,x^2-2x+1-y^2=\left(x-1\right)^2-y^2=\left(x-1-y\right)\left(x-1+y\right)\)
Bài 2
\(a,x\left(x-1\right)-x^2+2x=5\)
\(x^2-x-x^2+2x=5\)
\(x=5\)
\(b,4x^3-36x=0\)
\(4x\left(x^2-9\right)=0\)
\(4x\left(x-3\right)\left(x+3\right)=0\)
TH1 : x = 0
TH2 : x - 3 = 0 => x = 3
TH3 : x + 3 = 0 => x = -
Các câu mình chưa làm thì bạn t lm nh
Bài 1. Phân tích các đa thức sau thành nhân tử:
\(3x^2-6x\)
\(=3x.\left(x-2\right)\)
\(x^2-2x+1-y^2\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-1-y\right).\left(x-1+y\right)\)
\(9x^3-9x^2y-4x+4y\)
\(=9x^2.(x-y)-4.\left(x-y\right)\)
\(=\left(x-y\right).\left(9x^2-4\right)\)
\(=\left(x-y\right).\left(3x-2\right).\left(3x+2\right)\)
\(x^3-2x^2-8x\)
\(=x.\left(x^2-2x-8\right)\)
\(=x.\left(x^2+2x-4x-8\right)\)
\(=x.[x.\left(x+2\right)-4.\left(x+2\right)]\)
\(=x.\left(x+2\right).\left(x-4\right)\)
a) \(\left(x+1\right)^2-4\left(x+2\right)^2=0\Leftrightarrow\left(x+1\right)^2-\left[2\left(x+2\right)\right]^2=0\)
\(\Leftrightarrow\left[x+1-2\left(x+2\right)\right]\left[x+1+2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x+1-2x-4\right)\left(x+1+2x+4\right)=0\)
\(\Leftrightarrow\left(-x-3\right)\left(3x+5\right)=0\Leftrightarrow\orbr{\begin{cases}-x-3=0\\3x+5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-x=3\\3x=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-\frac{5}{3}\end{cases}}}\). Vậy .......
b) \(\left(x+2\right)^2-x^2-4=0\Leftrightarrow\left(x+2\right)^2-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+2-x+2\right)=4\left(x+2\right)=0\)
\(\Leftrightarrow x+2=0\Leftrightarrow x=-2\). Vậy x = -2
c) \(x+\sqrt{x}-12=0\Leftrightarrow x+4\sqrt{x}-3\sqrt{x}-12=0\) ( ĐKXĐ : \(x\ge0\) )
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}+4\right)-3\left(\sqrt{x}+4\right)=0\Leftrightarrow\left(\sqrt{x}-3\right)\left(\sqrt{x}+4\right)=0\)
\(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+4\ge4>0\Rightarrow\sqrt{x}+4\ne0\)
\(\Rightarrow\sqrt{x}-3=0\Leftrightarrow\sqrt{x}=3\Leftrightarrow x=9\left(TMĐK\right)\).
Vậy \(x=9\)