K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
21 tháng 8 2021

Với \(n\)lẻ: \(n=2k-1\)

\(S_n=1-2+3-...+\left(-1\right)^{n-1}n=1+\left(3-2\right)+...+\left[\left(-1\right)^{n-1}n-\left(-1\right)^{n-2}\left(n-1\right)\right]\)

\(=1+1+...+1=k\)

Với \(n\)chẵn: \(n=2k\)

\(S_n=1-2+3-...+\left(-1\right)^{n-1}n=\left(1-2\right)+\left(3-4\right)+...+\left[\left(-1\right)^{n-1}n-\left(-1\right)^{n-2}\left(n-1\right)\right]\)

\(=-1-1-...-1=-k\)

Áp dụng: 

\(D=S_{35}+S_{60}+S_{100}=18-30-50=-62\)

21 tháng 8 2021

Em cảm ơn thầy nhiều ạ !

21 tháng 8 2021

a, có \(m^2+m+1=\left(m+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

\(\Rightarrow y=\left(m^2+m+1\right)x-9\)  là hs bậc nhất với mọi m

b, có \(-m^2+4m-7=-\left(m-2\right)^2-3< 0\)

\(\Rightarrow y=\left(-m^2+4m-7\right)x+m+3\) là hs bậc 1 với mọi m

c, có \(m^2\ge0\Rightarrow m^2+1\ge1\Rightarrow\sqrt{m^2+1}\ge1>0\)

=> ,,,

d, có \(\left|m-1\right|\ge0\Rightarrow\left|m-1\right|+5\ge5>0\)

=> ,,,

21 tháng 8 2021

câu a)

Giải

undefined

câu b )

undefined

21 tháng 8 2021

A M E F O H K d

a, ME; MF là tiếp tuyến của (O) tại E;F (gt)

=> ME = MF (tính chất)

có OE = OF = r

=> OM là đường trung trực của EF

=> H là trung điểm của EF

b, MF là tiếp tuyến của (O) tại F => OFM = 90 => F thuộc đường tròn đk OM

mà OAM = 90 => A thuộc đường tròn đk OM

=> M;O;A;F cùng thuộc đường tròn đk OM 

c, xét tam giác OHK và tam giác OAM có : AOM chung 

^OHK = ^OAM = 90 

=>tam giác OHK đồng dạng tg OAM (g-g)

=> OK/OM = OH/OA

=> OK.OA = OM.OH mà OM.OH = OF^2 = r^2

=> OK.OA = r^2

d,  chưa nfhix ra

21 tháng 8 2021

thanks ạ

Trả lời :

\(\frac{1}{\sqrt{7}}+\frac{1}{\sqrt{11}}\)\(>\frac{2}{3}\)

# HOk tốt !

21 tháng 8 2021

❖ ☪áø❄™『ʈєɑɱ❖๖ۣۜƝƘ☆』  bạn ơi trình bày rõ ra được ko ạ?

21 tháng 8 2021

đặt \(A=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)

\(A^3=9+4\sqrt{5}+9-4\sqrt{5}+3\sqrt[3]{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)}\cdot A\)

\(A^3=18+3\sqrt[3]{81-16\cdot5}\cdot A\)

\(A^3=18+3A\)

\(\Leftrightarrow A^3-3A-18=0\)

\(\Leftrightarrow A^3-3A^2+3A^2-9A+6A-18=0\)

\(\Leftrightarrow A^2\left(A-3\right)+3A\left(A-3\right)+6\left(A-3\right)=0\)

\(\Leftrightarrow\left(A^2+3A+6\right)\left(A-3\right)=0\)

có \(A^2+3A+6=A^2+2\cdot\frac{3}{2}A+\frac{9}{4}+\frac{15}{4}=\left(A+\frac{3}{2}\right)^2+\frac{15}{4}>0\)

\(\Rightarrow A-3=0\)\(\)

\(\Leftrightarrow A=3\left(đpcm\right)\)