tính giá trị biểu thức sau theo cách hợp lí nhất:
(-13 x 2/5 + 2/9 : 2 và 1/2 + 2/5 x 11/9) x 2 và 1/2
em đang cần gaapsppp ạ !!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Let's break down the problem step by step:
Step 1:
We are given a right triangle ABC at vertex A, with altitude AH and median AD. We also know that I and J are the points where the medians of triangles ABH and ACH intersect with each other.
Step 2:
Since triangle ABC is a right triangle, we know that angle A is a right angle (90°). Therefore, we can conclude that triangle ABE is also a right triangle (with angle ABE being a right angle).
Step 3:
Now, let's focus on triangle ABH. Since I is the point where the median of triangle ABH intersects with the line segment AB, we know that AI = IB (by definition of median). Similarly, since J is the point where the median of triangle ACH intersects with the line segment AC, we know that AJ = JC (by definition of median).
Step 4:
Using the fact that I and J are on opposite sides of angle ABE, we can write:
AI + IB = AJ + JC
Since AI = IB and AJ = JC, we can simplify this equation to:
2IB = 2JC
Step 5:
Now, let's look at the triangles ABE and ACE. Since they share side AE and angle E is common to both triangles, we can say that:
∠EAB = ∠ECA (common angles)
Using this fact, we can conclude that:
AE = EB (since opposite sides of equal angles are equal)
Step 6:
Now we have:
AE = EB and IB = JC
Using these two equations, we can write:
IJ = IB - JC = AE - AE = 0
So, IJ is a zero-length line segment!
Conclusion:
Since IJ is a zero-length line segment, it means that I and J coincide with each other. This implies that:
IJ ⊥ AD (I and J are collinear with AD)
Therefore, we have shown that triangle ABE is a right triangle and IJ is perpendicular to AD.
Answer:
a. Tam giác ABE vuông b) IJ vuông góc với AD
\(\dfrac{120^5}{40^5}+\dfrac{8^{13}}{4^{10}}-\dfrac{390^4}{130^4}\)
\(=3^5+\dfrac{2^{39}}{2^{20}}-3^4\)
\(=243+2^{19}-81=524450\)
a) Căc cặp góc so le trong là:
\(\widehat{R_1}\) và \(\widehat{S_3}\)
\(\widehat{R_2}\) và \(\widehat{S_4}\)
Các cặp góc đồng vị là:
\(\widehat{S_1}\) và \(\widehat{R_1}\)
\(\widehat{S_2}\) và \(\widehat{R_2}\)
\(\widehat{S_3}\) và \(\widehat{R_3}\)
\(\widehat{S_4}\) và \(\widehat{R_4}\)
Các cặp góc trong cùng phía là:
\(\widehat{S_4}\) và \(\widehat{R_1}\)
\(\widehat{S_3}\) và \(\widehat{R_2}\)
b) Ta có:
\(\widehat{R_2}=120^o=>\widehat{S_2}=120^o\) (đồng vị)
\(\widehat{R_2}=120^o=>\widehat{S_3}=180^o-\widehat{R_2}=180^o-120^o=60^o\) (trong cùng phía)
\(\widehat{S_4}=120^o=>\widehat{R_4}=120^o\) (đồng vị)
\(\widehat{S_4}=120^o=>\widehat{R_1}=180^o-\widehat{S_4}=180^o-120^o=60^o\) (trong cùng phía)
\(\widehat{R_1}=60^o=>\widehat{S_1}=60^o\) (đồng vị)
\(\widehat{S_3}=60^o=>\widehat{R_3}=60^o\) (đồng vị)
a) Ta có:
\(\left\{{}\begin{matrix}AB\perp AC\\KH\perp AC\end{matrix}\right.=>AB//KH\)
b) Ta có:
\(\widehat{ABK}=\widehat{BKI}\left(=60^o\right)\)
Mà hai góc này ở vị trí so le trong
=> AB//KI
c) AB//HK = > \(\widehat{ABK}+\widehat{HKB}=180^o\)
Mà: \(\widehat{ABK}=\widehat{BKI}\)
\(=>\widehat{BKI}+\widehat{HKB}=180^o\)
=> \(\widehat{HKI}\) là góc bẹt hay H, K, I thẳng hàng
a) Ta có:
\(\widehat{ADE}=\widehat{ABC}\left(=45^o\right)\)
Mà hai góc này ở vị trí đồng vị
=> DE//BC
b) Ta có:
\(\widehat{FEC}=\widehat{ECB}\left(gt\right)\)
Mà hai góc này ở vị trí so le trong
=> EF//BC
c) Ta có: DE//BC
=> \(\widehat{DEC}+\widehat{ECB}=180^o\) (trong cùng phía)
Mà: \(\widehat{FEC}=\widehat{ECB}\left(gt\right)\)
\(=>\widehat{FEC}+\widehat{ECB}=180^o\)
\(=>\widehat{DEF}\) là góc bẹt
=> D, E, F thẳng hàng
a) Ta có:
\(\widehat{MAB}=\widehat{ABC}\left(=55^o\right)\)
Mà hai góc này ở vị trí so le trong
=> AM//BC
b) Ta có:
\(\widehat{NAC}=\widehat{ACB}\left(=40^o\right)\)
Mà hai góc này ở vị trí so le trong
=> AN//BC
c) Xét tam giác ABC có:
\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^o\\ =>\widehat{BAC}=180^o-\widehat{ABC}-\widehat{ACB}\\ =>\widehat{BAC}=180^o-55^o-40^o=85^o\)
\(\widehat{MAB}+\widehat{BAC}+\widehat{NAC}=55^o+85^o+40^o=180^o\)
=> \(\widehat{MAN}\) là góc bẹt => M, A, N thẳng hàng
\(\left(8+2\dfrac{1}{3}-\dfrac{3}{5}\right):\left(5-\dfrac{1}{4}-\dfrac{5}{8}\right)\\ =\left(8+2+\dfrac{1}{3}-\dfrac{3}{5}\right):\left(5-\dfrac{2}{8}-\dfrac{5}{8}\right)\\ =\left(10+\dfrac{1}{3}-\dfrac{3}{5}\right):\left(5-\dfrac{7}{8}\right)\\ =\left(\dfrac{150}{15}+\dfrac{5}{15}-\dfrac{9}{15}\right):\left(\dfrac{40}{8}-\dfrac{7}{8}\right)\\ =\dfrac{146}{15}:\dfrac{33}{8}\\ =\dfrac{146}{15}\cdot\dfrac{8}{33}\\ =\dfrac{1168}{495}\)
\(\left(-13\cdot\dfrac{2}{5}+\dfrac{2}{9}:2\dfrac{1}{2}+\dfrac{2}{5}\cdot\dfrac{11}{9}\right)\cdot2\dfrac{1}{2}\)
\(=\left(-\dfrac{26}{5}+\dfrac{2}{9}:\dfrac{5}{2}+\dfrac{22}{45}\right)\cdot\dfrac{5}{2}\)
\(=\left(-\dfrac{26}{5}+\dfrac{2}{9}\cdot\dfrac{2}{5}+\dfrac{22}{45}\right)\cdot\dfrac{5}{2}\)
\(=\left(-\dfrac{234}{45}+\dfrac{4}{45}+\dfrac{22}{45}\right)\cdot\dfrac{5}{2}\)
\(=\dfrac{-208}{45}\cdot\dfrac{5}{2}=-\dfrac{104}{9}\)
Chữ"và"trong ngoặc có phải dấu k bạn