Lan mua hai loại hàng và phải trả tổng cộng 120 nghìn đồng, trong đó đã tính cả 10 nghìn đồng là thuế giá trị gia tăng (viết tắt VAT). Biết rằng thuế VAT đối với loại hàng thứ nhất là 10%; thuế VAT đối với loại hàng thứ 2 là 8%. Hỏi nếu không kể thuế VAT thì Lan phải trả mỗi loại hàng bao nhiêu tiền?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét x+21\(\ge\)0 thì x\(\ge\)-21
khi đó phương trình trở thành \(x^2-2x+1+x+21-x^2-13=0\)
<=>-x+9=0
<=>x=9(TM)
xét x+21<0 thì x<-21
khi đó phương trình trở thành x2-2x+1+-x-21-x2-13=0
<=>-3x-33=0
<=>x=-11(loại)
vậy nghiệm của pt là x=9
Lập bảng xét dấu :
x | -21 | ||
x+21 | - | 0 | + |
+) Nếu \(x\ge-21\Leftrightarrow|x+21|=x+21\)
\(pt\Leftrightarrow\left(x-1\right)^2+\left(x+21\right)-x^2-13=0\)
\(\Leftrightarrow x^2-2x+1+x+21-x^2-13=0\)
\(\Leftrightarrow-x+9=0\)
\(\Leftrightarrow-x=-9\)
\(\Leftrightarrow x=9\left(tm\right)\)
+) Nếu \(x< -21\Leftrightarrow|x+21|=-x-21\)
\(pt\Leftrightarrow\left(x-1\right)^2+\left(-x-21\right)-x^2-13=0\)
\(\Leftrightarrow x^2-2x+1-x-21-x^2-13=0\)
\(\Leftrightarrow-3x-33=0\)
\(\Leftrightarrow-3x=33\)
\(\Leftrightarrow x=-11\)( loại )
Vậy phương trình có tập nghiệm \(S=\left\{9\right\}\)
A B C D E F H K
a. ta có \(\hept{\begin{cases}\widehat{ADB}=\widehat{CFB}=90^0\\\widehat{ABD}=\widehat{CBF}\end{cases}\Rightarrow\Delta ABD~\Delta CBF\left(g.g\right)}\)
b.Ta có \(\hept{\begin{cases}\widehat{AFH}=\widehat{CDH}=90^0\\\widehat{AHF}=\widehat{CHD}\text{ (đối đỉnh)}\end{cases}\Rightarrow\Delta AHF~\Delta CHD\left(g.g\right)}\)\(\Rightarrow\frac{AH}{HF}=\frac{CH}{HD}\Rightarrow AH.HD=CH.HF\)
c. từ câu a ta có \(\frac{BD}{BF}=\frac{BA}{BC}\Rightarrow\Delta BDF~\Delta BAC\left(c.g.c\right)\)
a, chứng minh EFGH là hình bình hành do có EF//HG (cùng song2 với AC) và HE//GF(cùng song2 BD)
mà có EG=HF=> EFGH là hình thoi (*)
ta có BD//HE=> góc HEF vuông (**)
từ (*)(**) => EFGH là hình vuông ( hình thoi có 1 góc vuông )
A B C D E F G H M
a) Dễ dàng chứng minh được \(\Delta AEH=\Delta BFE=\Delta CGF=\Delta DHG\)
\(\Rightarrow EH=EF=FG=HG\)
=>EFGH là hình thoi
\(\Delta AEH\)vuông cân tại A =>\(\widehat{AEH}=45^0\)
\(\Delta BEF\)vuông cân tại B=>\(\widehat{BEF}=45^0\)
=>\(\widehat{HEF}=90^0\)
=> EFGH là hình vuông
b) Ta chứng minh được : \(\Delta EBC=\Delta FCD\left(cgv.cgv\right)\)
\(\Rightarrow\widehat{BCE}=\widehat{CDF}\)
\(\Rightarrow\widehat{BCE}+\widehat{MCD}=\widehat{CDF}+\widehat{MCD}\)
\(\Rightarrow90^0=\widehat{MCD}+\widehat{CDM}\)
\(\Rightarrow180^0-\widehat{MCD}-\widehat{CDM}=\widehat{DMC}\)
\(\Rightarrow\widehat{DMC}=90^0hayDF\perp CE\)
gọi N là giao điểm của AG và DF
cm tương tự \(DF\perp CE\)ta được AG\(\perp\)DF
=>GN//CM mà G là trung điểm của DC =>N là trung điểm của DM
\(\Delta\)ADM có AN vừa là đường cao vừa là đường phân giác =>\(\Delta ADM\)cân tại A
c)ta cm \(\Delta DMC~\Delta DCF\left(g.g\right)\Rightarrow\frac{DC}{DF}=\frac{CM}{CF}\)
\(\Rightarrow\frac{S_{DMC}}{S_{DCF}}=\left(\frac{DC}{DF}\right)^2\Rightarrow S_{DMC}=\left(\frac{DC}{DF}\right)^2\cdot S_{DCF}\)
Mà \(S_{DCF}=\frac{1}{2}DF\cdot DC=\frac{1}{4}DC^2\)
Vậy \(S_{DMC}=\frac{DC^2}{DF^2}\cdot\frac{1}{4}DC^2\)
Trong tam giác DCF theo định lý py ta go có:
\(DF^2=CD^2+CF^2=CD^2+\left(\frac{1}{2}AB\right)^2=CD^2+\frac{1}{4}CD^2=\frac{5}{4}CD^2\)
Do đó \(S_{DMC}=\frac{CD^2}{\frac{5}{4}CD^2}\cdot\frac{1}{4}CD^2=\frac{1}{5}CD^2=\frac{1}{5}a^2\)
Gọi x (đồng) là tiền mua loại hàng thứ nhất không kể thuế VAT (0 < x < 110000)
Tiền mua loại hàng thứ hai không kể thuế VAT: 110000 - x
Số tiền thất sự Lan đã trả cho loại hàng 1: x + 0,1x
Số tiền thất sự Lan đã trả cho loại hàng 2:
110000 - x + 0,08(110000 - x)
Ta có phương trình
x+ 0,1x + 110000 - x + 0,08(110000 - x) = 120000
⇔ 0,1x + 110000 + 8800 - 0,08x = 120000
⇔ 0,02x = 1200
⇔ x = 60000
x = 6000 thoả mãn điều kiện
Vậy số tiền trả cho loại hàng thứ nhất là 60000 đồng (không kể thuế VAT)
Số tiền phải trả cho loại hàng thứ hai không kể thuế VAT: 50000 đồng
Gọi x (đồng) là tiền mua loại hàng thứ nhất không kể thuế VAT (0 < x < 110000)
Tiền mua loại hàng thứ hai không kể thuế VAT: 110000 - x
Số tiền thất sự Lan đã trả cho loại hàng 1: x + 0,1x
Số tiền thất sự Lan đã trả cho loại hàng 2:
110000 - x + 0,08(110000 - x)
Ta có phương trình
x+ 0,1x + 110000 - x + 0,08(110000 - x) = 120000
⇔ 0,1x + 110000 + 8800 - 0,08x = 120000
⇔ 0,02x = 1200
⇔ x = 60000
x = 6000 thoả mãn điều kiện
Vậy số tiền trả cho loại hàng thứ nhất là 60000 đồng (không kể thuế VAT)
Số tiền phải trả cho loại hàng thứ hai không kể thuế VAT: 50000 đồng