cho a,b,c là 3 số thực dương. chứng minh rằng : \(\sqrt{\dfrac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\dfrac{b^3}{b^3+\left(c+a\right)^3}}+\sqrt{\dfrac{c^3}{c^3+\left(a+b\right)^3}}\ge1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(x^4\ge0\); \(x^2\ge0\) và \(1>0\) nên \(x^4+x^2+1>0\)
Vậy pt đã cho không có nghiệm thực.
\(có:\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le a+b+c\)
\(b+1\ge2\sqrt{b}\Rightarrow-\dfrac{b\sqrt{a}}{1+b}\ge-\dfrac{b\sqrt{a}}{2\sqrt{b}}=-\dfrac{\sqrt{ab}}{2}\)
\(tương\) \(tự\Rightarrow-\dfrac{c\sqrt{b}}{1+c}\ge-\dfrac{\sqrt{bc}}{2};-\dfrac{a\sqrt{c}}{1+a}\ge-\dfrac{\sqrt{ac}}{2}\)
\(\Rightarrow P\ge\dfrac{2021}{a+b+c}-\left(\dfrac{\sqrt{ac}+\sqrt{bc}+\sqrt{ac}}{2}\right)\ge\dfrac{2021}{3}-\dfrac{a+b+c}{2}=\dfrac{2021}{3}-\dfrac{3}{2}=\dfrac{4033}{6}\)
\(\Rightarrow minP=\dfrac{4033}{6}\Leftrightarrow a=b=c=1\)
Ta có:
\(\widehat{A}=108^o\)
\(\widehat{B}=18^o\)
\(\Rightarrow\widehat{C}=180^o-108^o-18^o=54^o\)
Ta có:
\(\widehat{AOB}=2\widehat{ACB}=108^o\)
\(\widehat{AOC}=2\widehat{ABC}=36^o\)
\(\Rightarrow\widehat{OAC}=\dfrac{180^o-36^o}{2}=72^o\)
\(\widehat{OAB}=\dfrac{180^o-72^o}{2}=36^o\)
Kẻ \(OH\text{⊥}AC\Rightarrow AH=OA\)
\(\cos\widehat{OAC}=10cos72^o\)
\(\Rightarrow\text{ }AC=2AH=20cos72^o\)
\(\text{Tương tự:}AB=20\cos36^o\)
\(\Rightarrow AB-AC=10cm\)
Gọi \(x\left(km/h\right)\) là vận tốc thực của ca nô. \(\left(x>4\right)\)
Vì vận tốc dòng nước là \(4km/h\) nên vận tốc của ca nô lúc xuôi dòng là \(x+4\left(km/h\right)\) và vận tốc lúc ngược dòng là \(x-4\left(km/h\right)\)
Vì quãng sông AB dài 24km nên thời gian ca nô xuôi dòng từ A đến B là \(\dfrac{24}{x+4}\left(h\right)\), thời gian ca nô ngược dòng từ B về A là \(\dfrac{24}{x-4}\left(h\right)\)
Mà tổng thời gian ca nô xuôi và ngược dòng là \(3h12p=\dfrac{16}{5}h\) nên ta có pt \(\dfrac{24}{x+4}+\dfrac{24}{x-4}=\dfrac{16}{5}\)\(\Leftrightarrow\dfrac{1}{x+4}+\dfrac{1}{x-4}=\dfrac{2}{15}\)\(\Leftrightarrow\dfrac{\left(x-4\right)+\left(x+4\right)}{\left(x+4\right)\left(x-4\right)}=\dfrac{2}{15}\)\(\Leftrightarrow\dfrac{2x}{x^2-16}=\dfrac{2}{15}\)\(\Leftrightarrow\dfrac{x}{x^2-16}=\dfrac{1}{15}\)\(\Rightarrow x^2-16=15x\)\(\Leftrightarrow x^2-15x-16=0\) (1)
pt (1) có \(a-b+c=1-\left(-15\right)-16=0\) nên pt này có 2 nghiệm:
\(x_1=-1\) (loại) và \(x_2=-\dfrac{-16}{1}=16\) (nhận)
Vậy vận tốc thực của ca nô là \(16km/h\)
\(\Sigma\sqrt{\dfrac{a^3}{a^3+\left(b+c\right)^3}}=\Sigma\sqrt{\dfrac{1}{1+\left(\dfrac{b+c}{a}\right)^3}}\)\(\left(1\right)\)
\(đặt:\left(\left(\dfrac{b+c}{a}\right)^{ };\left(\dfrac{c+a}{b}\right)^{ };\left(\dfrac{a+b}{c}\right)^{ }\right)=\left(x;y;z\right)\)
\(\left(1\right)\Leftrightarrow\sqrt{\dfrac{1}{1+x^3}}+\sqrt{\dfrac{1}{1+y^3}}+\sqrt{\dfrac{1}{1+z^3}}=\sqrt{\dfrac{1}{\left(x+1\right)\left(x^2-x+1\right)}}+\sqrt{\dfrac{1}{\left(y+1\right)\left(y^2-y+1\right)}}+\sqrt{\left(z+1\right)\left(z^2-z+1\right)}\)
\(\sqrt{\dfrac{1}{\left(x+1\right)\left(x^2-x+1\right)}}\ge\dfrac{1}{\dfrac{x+1+x^2-x+1}{2}}=\dfrac{2}{x^2+2}\)
\(tương\) \(tự\Rightarrow\left(1\right)\ge\dfrac{2}{x^2+2}+\dfrac{2}{y^2+2}+\dfrac{2}{z^2+2}\)
\(=\dfrac{2}{\left(\dfrac{b+c}{a}\right)^2+2}+\dfrac{2}{\left(\dfrac{c+a}{b}\right)^2+2}+\dfrac{2}{\left(\dfrac{a+b}{c}\right)^2+2}=\dfrac{2a^2}{\left(b+c\right)^2+2a^2}+\dfrac{2b^2}{\left(c+a\right)^2+2b^2}+\dfrac{2c^2}{\left(a+b\right)^2+2c^2}\)
\(bunhia\Rightarrow\left(b+c\right)^2\le2\left(b^2+c^2\right)\Rightarrow\dfrac{2a^2}{\left(b+c\right)^2+2a^2}\ge\dfrac{2a^2}{2\left(a^2+b^2\right)+2a^2}=\dfrac{a^2}{a^2+b^2+c^2}\)
\(tương\) \(tự\Rightarrow\left(1\right)\ge\dfrac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\left(đpcm\right)\)