\(\dfrac{x}{0}\) và x - 1 đâu không phải là phân thức đại số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(C=\frac{5(x^2-4x+4)-2x+5}{x^2-4x+4}=\frac{5(x-2)^2-2(x-2)+1}{(x-2)^2}=5-\frac{2}{x-2}+\frac{1}{(x-2)^2}\)
Đặt $\frac{1}{x-2}=t$ thì:
$C=t^2-2t+5=(t-1)^2+4\geq 4$ với mọi $t$
$\Rightarrow C_{\min}=4$. Vậy GTNN của $C$ là $4$. Giá trị này đạt tại $t=1$
$\Leftrightarrow \frac{1}{x-2}=1\Leftrightarrow x=3$
Lời giải:
$ab+bc+ac=\frac{(a+b+c)^2-(a^2+b^2+c^2)}{2}=\frac{9^2-27}{2}=27$
$\Rightarrow a^2+b^2+c^2=ab+bc+ac$
$\Leftrightarrow 2(a^2+b^2+c^2)=2(ab+bc+ac)$
$\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)=0$
$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$
Vì $(a-b)^2; (b-c)^2; (c-a)^2\geq 0$ với mọi $a,b,c$ nên để tổng của chúng bằng $0$ thì $(a-b)^2=(b-c)^2=(c-a)^2=0$
$\Rightarrow a=b=c$
Mà $a+b+c=9$ nên $a=b=c=3$.
Khi đó:
$(a-4)^{2021}+(b-4)^{2022}+(c-4)^{2023}=(-1)^{2021}+(-1)^{2022}+(-1)^{2023}$
$=(-1)+1+(-1)=-1$
Áp dụng định lý Bơ-du ta có:
f(x) ⋮ (2x+5) ⇔ f(\(\dfrac{-5}{2}\))=0 (Kiến thức nâng cao lớp 8)
⇔ (\(\dfrac{-5}{2}\))4+(\(\dfrac{-5}{2}\))3+12.(\(\dfrac{-5}{2}\))2-m=0
⇔ \(\dfrac{1575}{16}\)-m=0
⇔ m= \(\dfrac{1575}{16}\)
Vậy m=\(\dfrac{1575}{16}\) thì x4+x3+12x2-m chia hết cho 2x+5
\(B=\dfrac{x^2-x+1+4}{x^2-x+1}=1+\dfrac{4}{x^2-x+1}=1+\dfrac{4}{\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\)
Do \(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4};\forall x\)
\(\Rightarrow B\le1+\dfrac{4}{\dfrac{3}{4}}=\dfrac{19}{3}\)
Vậy \(B_{max}=\dfrac{19}{3}\) khi \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)
\(\dfrac{x}{0}\)