cho pt x^2-2\left(m-3\right)x+3-m=0\: xác địnhm đề pt có 2 nghiệm pb thỏa x1^2+x2^2=2\left(x1+x2\right)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây là cách làm của em, nếu sai nhờ anh chỉ giáo:
ĐK: Với mọi x thuộc R
\(\left(x+5\right)\sqrt{2x^2+1}=x^2+x+5\Leftrightarrow\left(x+5\right)\sqrt{2x^2+1}=\frac{1}{2}\left(2x^2+1\right)+\left(x+5\right)-\frac{1}{2}..\)
Đặt: \(\hept{\begin{cases}a=x+5\\b=\sqrt{2x^2+1};b\ge0\end{cases}}\), ta có pttt:
\(ab=\frac{1}{2}a^2+b-\frac{1}{2}\Leftrightarrow\frac{1}{2}a^2-\frac{1}{2}-ab+b=0\Leftrightarrow\frac{1}{2}\left(a^2-1\right)-b\left(a-1\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left[\frac{1}{2}\left(a+1\right)-b\right]=0\Leftrightarrow[\begin{cases}a=1\\\frac{a+1}{2}=b\end{cases}\)
+) \(a=1\Leftrightarrow x+5=1\Leftrightarrow x=-4\)
+) \(\frac{a+1}{2}=b\Leftrightarrow\frac{x+5+1}{2}=\sqrt{2x^2+1}\Leftrightarrow x+6=2\sqrt{2x^2+1}\)
\(\Rightarrow x^2+12x+36=8x^2+4\Leftrightarrow7x^2-12x-32=0\Leftrightarrow x=\frac{6\pm2\sqrt{65}}{7}.\)
Vậy x = 1 hoặc \(x=\frac{6\pm2\sqrt{65}}{7}.\)
sai òi nè , đáp án có 3 nghiệm nha bạn , \(x=\sqrt{41};x=0;x=-9\)
Ta có : \(\overline{A}=\overline{A_1UA_2UA_3}=\overline{A_1}\) \(\overline{A_2}\)\(\overline{A_3}\)= sự kiện không có ai bắn trúng
\(\Rightarrow P\left(\overline{A}\right)=\)\((\overline{A_1}\)\(\overline{A_2}\)\(\overline{A_3})\)\(=P\left(\overline{A_1}\right)P\left(\overline{A_2}\right)P\left(\overline{A_3}\right)=0,5.0,4.0,3=0,06\)
\(\Rightarrow P\left(A\right)=1-P\left(\overline{A}\right)=1-0,06=0,94\)
Vậy xác xuất để con thú bị bắn trúng là 0,94
Ta có \(\left(X-a\right)^2-X^2-2aX+a^2\)
vì tồn tại E(X) và E(X2) nên tồn tại \(E\left[\left(X-a\right)^2\right]\)hay \(\exists D\left(X\right)\)
\(\Rightarrow\) \(D\left(X\right)=E\left[\left(X-a\right)^2\right]=E\left(X^2-2aX+a^2\right)\)
\(=E\left(X^2\right)-2aE\left(X\right)+E\left(a^2\right)\)
\(=E\left(X^2\right)-2a.a+a^2=E\left(X^2\right)-a^2=E\left(X^2\right)-E^2\left(X\right)\)
a) ĐKXĐ: x\(\ge\)-3
PT\(\Leftrightarrow\sqrt{\left(x+7\right)\left(x+3\right)}=3\sqrt{x+3}+2\sqrt{x+7}-6\)
Đặt \(\left(\sqrt{x+3},\sqrt{x+7}\right)=\left(a,b\right)\) \(\left(a,b\ge0\right)\)
PT\(\Leftrightarrow ab=3a+2b-6\Leftrightarrow a\left(b-3\right)-2\left(b-3\right)=0\)
\(\Leftrightarrow\left(a-2\right)\left(b-3\right)=0\Leftrightarrow\orbr{\begin{cases}a=2\\b=3\end{cases}}\)(TM ĐK)
TH 1: a=2\(\Leftrightarrow\sqrt{x+3}=2\Leftrightarrow x+3=4\Leftrightarrow x=1\)(tm)
TH 2: b=3\(\Leftrightarrow\sqrt{x+7}=3\Leftrightarrow x+7=9\Leftrightarrow x=2\)(tm)
Vậy tập nghiệm phương trình S={1; 2}