Cho hình bình hành ABCD. Gọi E,F lần lượt là trung điểm của các cạnh AB,CD. Chứng minh:
a. Hai tứ giác AEFD, ABFC là những hình bình hành
b. BF=DE, EF=AD, AF=EC
CÁC BẠN GIÚP MIK NHA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left(5x-1\right)+2\left(1-5x\right)\left(4+5x\right)+\left(5x+4\right)^2\)
\(P=5x-1+\left(2-10x\right)\left(4+5x\right)+\left(5x+4\right)^2\)
\(P=5x-1+8+10x-40x-50x^2+25x^2+40x+16\)
\(P=\left(25x^2-50x^2\right)+\left(5x+10x-40x+40x\right)+\left(-1+8+16\right)\)
\(P=-25x^2+15x+23\)
P=(5x−1)+2(1−5x)(4+5x)+(5x+4)2
�=5�−1+(2−10�)(4+5�)+(5�+4)2P=5x−1+(2−10x)(4+5x)+(5x+4)2
�=5�−1+8+10�−40�−50�2+25�2+40�+16P=5x−1+8+10x−40x−50x2+25x2+40x+16
�=(25�2−50�2)+(5�+10�−40�+40�)+(−1+8+16)P=(25x2−50x2)+(5x+10x−40x+40x)+(−1+8+16)
�=−25�2+15�+23P=−25x2+15x+23
`@` `\text {Ans}`
`\downarrow`
\(3x²+x-3x²\)
`= (3x^2 - 3x^2) + x`
`= x`
`@` `\text {Ans}`
`\downarrow`
`2x(x-2)-(2x-1)(x+1)-5(x-100)`
`= 2x^2 - 4x - [2x(x+1) - x - 1] - 5x + 500`
`= 2x^2 - 4x - (2x^2 + 2x - x - 1) - 5x + 500`
`= 2x^2 - 4x - 2x^2 - 2x + x + 1 - 5x + 500`
`= (2x^2 - 2x^2) + (-4x - 2x + x - 5x) + (1 + 500)`
`= -10x + 501`
`@` `\text {Duynamlvhg}`
A B C D E F
a/
Ta có
AB = CD (cạnh đối hình bình hành)
AE = BE (gt); CF=DF (gt)
=> AE = BE = CF = DF
Xét tứ giác AEFD có
AB//CD (cạnh đối hình bình hành)
=> AE//DF mà AE = DF (cmt) => AEFD là hbh (tứ giác có cặp cạnh đối // và bằng nhau là hình bình hành)
Xét tứ giác AECF có
AB//CD (cạnh đối hbh)
=> AE//CF mà AE = CF => AECF là hình bình hành (lý do như trên)
b/
Do AEFD là hbh => EF=AD (cạnh đối hbh)
C/m tương tự như câu a ta cũng có BEDF là hbh => BF=DE (cạnh đối hbh)
C/m tương tự có AECF là hbh => AF=EC (cạnh đối hbh)
\(x^2+y^2+z^2=xy+yz+zx\)
=> \(2x^2+2y^2+2x^2=2xy+2yz+2zx\)
=> \(2x^2+2y^2+2x^2-2xy-2yz-2zx=0\)
=> \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
=> x -y =0 ; y - z=0 ; z - x=0
=> x =y; y =z; z=x
=> x=y=z
\(a+b+c+d=0\Rightarrow a+b=-\left(c+d\right)\)
\(\Rightarrow\left(a+b\right)^3=-\left(c+d\right)^3\)
\(\Rightarrow\left(a+b\right)^3+\left(c+d\right)^3=0\)
\(\Rightarrow a^3+b^3+3ab\left(a+b\right)+c^3+d^3+3cd\left(c+d\right)=0\)
\(\Rightarrow a^3+b^3+c^3+d^3=-3ab\left(a+b\right)-3cd\left(c+d\right)\)
\(\Rightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)\) (do \(a+b=-\left(c+d\right)\)
\(\Rightarrow a^3+b^3+c^3+d^3=3\left(ab-cd\right)\left(c+d\right)\)
\(25x^2-10xy+y^2=\left(5x\right)^2-2.5x.y+y^2=\left(5x-y\right)^2\)
\(\dfrac{4}{9}x^2+\dfrac{20}{3}xy+25y^2=\left(\dfrac{2}{3}x\right)^2+2.\dfrac{2}{3}x.5y+\left(5y\right)^2=\left(\dfrac{2}{3}x+5y\right)^2\)
Điều kiện \(0< x\le120\)
Số tiền thu được khi bán \(120-x\) món quà là \(x\left(120-x\right)=-x^2+120x\)
Lợi nhuận thu được là \(-x^2+120x-40x=-x^2+80x\)
Ta quy về bài toán tìm giá trị lớn nhất của hàm số \(f\left(x\right)=-x^2+80x\). Ta thấy \(f\left(x\right)=-\left(x^2-80x+1600\right)+1600\) \(=-\left(x-40\right)^2+1600\) \(\le1600\). Dấu "=" xảy ra khi và chỉ khi \(x-40=0\Leftrightarrow x=40\) (nhận)
Như vậy, giá bán một món quà ở đợt này nên là 40 nghìn đồng để lợi nhuận thu được là cao nhất.
câu a: áp dụng "Tứ giác có 1 cặp cạnh đối song song và bằng nhau là hình bình hành"
Câu b: Áp dụng t/c như câu a chứng minh các tứ giác chứa các đoạn thẳng cần c/m bằng nhau ;à hình bình hành từ đó áp dụng t/c "Trong hình bình hành các cặp cạnh đối bằng nhau"
https://onlinemath.vn/cau-hoi/viet-1-doan-van-tong-phan-hop-khoang-12-cau-phan-tich-kho-tho-thu-2-bai-que-huong-trong-do-su-dung-1-cau-cam-than-vs-cau-ghep-chi-ro.8109170456376