K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2019

cách 2 nếu chưa học bezout

x^3 +mx+n x-1 x^2+x+(m+1) x^3-x^2 - x^2+mx+n x^2-x - (m+1)x+n (m+1)x-(m+1) - n+m+1

Mà \(A\left(x\right):\left(x-1\right)\)dư 4\(\Rightarrow m+n+1=4\)

                                                 \(\Rightarrow m+n=3\left(1\right)\)

x^3 +mx+n x+1 x^2-x+(m+1) x^3+x^2 - -x^2+mx+n -x^2-x - (m+1)x+n (m+1)x+(m+1) - n-m-1

Mà \(A\left(x\right):\left(x+1\right)\)dư 6\(\Rightarrow n-m-1=6\)

                                               \(\Rightarrow n-m=7\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\Rightarrow\hept{\begin{cases}n+m=3\\n-m=7\end{cases}\Rightarrow\hept{\begin{cases}n=5\\m=-2\end{cases}}}\)

Vậy n=5 và m=-2

22 tháng 10 2019

Áp dụng định lý Bezout ta có:

\(A\left(x\right)\)chia x-1 dư 4 \(\Rightarrow A\left(1\right)=4\)

                                    \(\Rightarrow1+m+n=4\)

                                     \(\Rightarrow m+n=3\left(1\right)\)

\(A\left(x\right)\)chia x+1 dư 6 \(\Rightarrow A\left(-1\right)=6\)

                                       \(\Rightarrow-1-m+n=6\)

                                      \(\Rightarrow-m+n=7\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\Rightarrow\hept{\begin{cases}m+n=3\\-m+n=7\end{cases}\Rightarrow}\hept{\begin{cases}n=5\\m=-2\end{cases}}\)

Vậy n=5 và m=-2 

22 tháng 10 2019

Làm hơi tắt nhé

  • Nếu \(y=0\Rightarrow x^2=65\Rightarrow x\notin Z\)
  • Nếu \(y>1\Rightarrow x^2+y^3-3y^2=65-3y\Leftrightarrow x^2+\left(y^3-3y^2+3y-1\right)=64\Leftrightarrow x^2-\left(y-1\right)^3=64\)
  • Mà \(x;y-1\in N;64=0^2+4^3=8^2+0^3\)
  • \(Th1:\hept{\begin{cases}x=0\\y-1=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=5\end{cases}}}\)
  • \(Th2:\hept{\begin{cases}x=8\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=8\\y=1\end{cases}}}\)
  • Thử lại ta có nghiệm nguyên là : \(\left(0;5\right),\left(8;1\right)\)
22 tháng 10 2019

<=> x2  = 64 - (y-1)3 \(\ge0< =>4\ge y-1< =>y\le5.\)

y=5 => x=0 (thỏa mãn); y=4 => x2 = 37 (loại); y=3 => x2 =56 (loại); y= 2 => x2 = 63 loại; y=1 => x= 8; y=0 => x= 65 loại

vậy các nghiệm (x;y) = (0;5); (1;8)

22 tháng 10 2019

Ta có:

M = (a + 1)(a + 2)(a + 3)(a + 4)  + 1

M = [(a + 1)(a + 4)][(a + 2)(a + 3)] + 1

M = (a2 + 4a + a + 4)(a2 + 3a + 2a + 6) + 1

M = (a2 + 5a + 4)(a2 + 5a + 6) + 1

M = (a2 + 5a + 4)2 + 2(a2 + 5a + 4) + 1

M = (a2 + 5a + 4 + 1)2

M = (a2 + 5a + 5)2

=> M là bình phương của 1 số nguyên 

22 tháng 10 2019

\(M=\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)+1\)

\(M=\left[\left(a+1\right)\left(a+4\right)\right]\left[\left(a+2\right)\left(a+3\right)\right]+1\)

\(M=\left[a\left(a+4\right)+\left(a+4\right)\right]\left[a\left(a+3\right)+2\left(a+3\right)\right]+1\)

\(M=\left(a^2+4a+a+4\right)\left(a^2+3a+2a+6\right)+1\)

\(M=\left(a^2+5a+5\right)^2-1+1\)

\(M=a^2+5a+5\)

Mà \(a\inℤ\Rightarrow\left(a^2+5a+5\right)\inℤ\)

Vậy,..................

1. Cho điểm A nằm trong góc xoy. Vẽ điểm B đối xứng A qua Ox, vẽ điểm C đối xứng với A qua Oy. Hãy tìm điều kiện về số đo góc xoy để B và C đối xứng với nhau qua O2. Cho  hình bình hành ABCD. Gọi E, F lần lượt là trung điểm của AD, BC. Đường cheó AC cắt BE, DF tại P, Q                                         a) CM: AP = PQ = QC                                             ...
Đọc tiếp

1. Cho điểm A nằm trong góc xoy. Vẽ điểm B đối xứng A qua Ox, vẽ điểm C đối xứng với A qua Oy. Hãy tìm điều kiện về số đo góc xoy để B và C đối xứng với nhau qua O

2. Cho  hình bình hành ABCD. Gọi E, F lần lượt là trung điểm của AD, BC. Đường cheó AC cắt BE, DF tại P, Q                                         a) CM: AP = PQ = QC                                                                                                                                                                                         b) Lấy M bất kì thuộc đoạn thẳng DC. Gọi I, K lần lượt là các điểm đối xứng của M qua E, F. CM: I, K thuộc đường thẳng AB                       c) CM: AI + AK không đổi khi M di chuyển trên cạnh CD              

0
23 tháng 10 2019

Câu hỏi của Lưu Thanh Vy - Toán lớp 8 - Học toán với OnlineMath

Em tham khaoe link trên.

22 tháng 10 2019

Điều kiện <=> y2 =1 -(x-2)2 \(\ge0< =>\left(x-2\right)^2\le1< =>-1\le x-2\le1< =>1\le x\le3.\)

 m = x2+y2 = x2 +1 -(x-2)2 = 4x -3

=> 4.1-3 \(\le m\le\)4.3-3 <=> \(1\le m\le9\)

m Min =1 khi x =1; m Max= 9 khi x =3

14 tháng 1 2020

thanks

Bài làm

Ta có: x2 + y2 + z2 = 12     ( 1 )    

-4( x + y + z ) = -4 . 6

-4x - 4y - 4z = -24         ( 2 ) 

Cộng ( 1 ) vào ( 2 ) ta được: 

x2 + y2 + z2 + ( -4x - 4y - 4z ) = 12 - 24

x2 + y2 + z2 - 4x - 4y - 4z = -12

x2 + y2 + z2 - 4x - 4y - 4z + 12 = 0

x2 + y2 + z2 - 4x - 4y - 4z + 4 + 4 + 4 = 0

( x2 - 4x + 4 ) + ( y2 - 4y + 4 ) + ( z2 - 4z + 4 ) = 0

( x - 2 )2 + ( y - 2 )2 + ( z - 2 )2 = 0

Vì ( x - 2 )2 > 0 V x 

     ( y - 2 )2 > 0 V y

     ( z - 2 )2 > 0 V z

Nên x - 2 = 0 => x = 2

        y - 2 = 0 => y = 2

        x - 2 = 0 => z = 2

Vậy x =2; y = 2; z = 2

# Học tốt #

22 tháng 10 2019

x + y + z = 6

Ta có: 1 + 2 + 3 = 6

=> x = 1

     y = 2

     z = 3

22 tháng 10 2019

Ko đăng câu hỏi linh tinh

mẹ cậu đùa ấy!mik là cú đêm nek! có bị j đâu?