Giải phương trình: x=\(\sqrt{x+\frac{1}{x}}+\sqrt{1-\frac{1}{x}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ dàng viết được phương trình đoạn AB là :
4x−3y−65=04x−3y−65=0
và phương trình đoạn AC là:
9x+12y−15=09x+12y−15=0
Phương trình đường phân giác góc A là:
|4x−3y−65|5=|9x+12y−15|15|4x−3y−65|5=|9x+12y−15|15
Từ đó ta rút ra 2 phương trình đường phân giác :
3x−21y−180=03x−21y−180=0 (Δ1)(Δ1)
Hoặc 21x+3y−210=021x+3y−210=0 (Δ2)(Δ2)
Xét (Δ1)(Δ1) : f(x,y)=3x−21y−180f(x,y)=3x−21y−180
f(xB,yB)=−323f(xB,yB)=−323
f(xC,yC)=−255f(xC,yC)=−255
=>=> f(xB,yB).f(xC,yC)≥0f(xB,yB).f(xC,yC)≥0
=>=> B, C nằm cùng phía với đường thẳng (Δ1)(Δ1)
=>=> phương trình đường phân giác trong góc A là : 21x+3y−210=021x+3y−210=0 (Δ2)(Δ2)
Hoàn toàn tương tự ta có phương trình đường phân giác trong góc B là: 27x−39y−270=027x−39y−270=0 (Δ3)(Δ3)
Gọi I là tâm đường tròn nội tiếp ΔABCΔABC hay I là giao điểm 2 đường phân giác trong (Δ2)(Δ2) và (Δ3)(Δ3)
Từ đó tọa độ của I là nghiệm hệ pt:
{21x+3y−210=027x−39y−270=0{21x+3y−210=027x−39y−270=0
<=><=> {x=10y=0{x=10y=0
vậy tâm I có tọa độ là (10;0)(10;0)
từ tâm I dùng công thức khoảng cách đến các cạnh tam giác ABC rồi suy ra bán kính bằng 5 (đvđd)
xong nhé