Cho a,b,c > 0
a+b+c=1
CM: \(\left(\frac{1}{a}-1\right)\left(\frac{1}{b}-1\right)\left(\frac{1}{c}-1\right)\ge8\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://olm.vn/hoi-dap/detail/223126660207.html?pos=512235459592
Giờ mình mới để ý , câu này có trong chuyên đề : Bất đẳng thức Cauchy (Cô si) của cô Nguyễn Linh Chi (ở phần dạng toán và hướng dẫn giải) (mình đã inbox link cho bạn rồi)
Còn đề bạn viết sai rồi nhé
a) \(2\sqrt{2-\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)=2\sqrt{2-\sqrt{3}}.\sqrt{2}.\left(\sqrt{3}+1\right).\)
\(=2\sqrt{2\left(2-\sqrt{3}\right)}.\left(\sqrt{3}+1\right)=2\sqrt{3-2\sqrt{3}+1}\left(\sqrt{3}+1\right)\)
\(=2\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}+1\right)=2\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)
\(=2\left(3-1\right)=4\)
b) Bạn coi lại đề nhé điều kiện để một căn bậc hai số học ó nghĩa hay xác định thì biểu thức dưới căn đó phải không âm
Mà \(4< 5\Rightarrow2< \sqrt{5}\Rightarrow2-\sqrt{5}< 0\Rightarrow\sqrt{2-\sqrt{5}}\)không xác định
(p/s đừng ti ck cho câu trả lời này)
Bài này có nhiều cách, làm cách ngắn gọn, phổ thông nhé:
Với \(a,b\ge0\)Áp dụng bất đẳng thức AM-GM cho ba số không âm ta có:
\(1+a+b\ge3\sqrt[3]{1.a.b}=3\sqrt[3]{ab}\)
\(a+b+ab\ge3\sqrt[3]{a.b.ab}=3\sqrt[3]{a^2b^2}\)
\(\Rightarrow\left(1+a+b\right)\left(a+b+ab\right)\ge3\sqrt[3]{ab}.3\sqrt[3]{a^2b^2}=9ab\)
Dấu '=' xảy ra khi \(\hept{\begin{cases}a=b=1\\a=b=ab\end{cases}\Leftrightarrow a=b=1}\)
(p/s đừng ti ck cho câu trả lời này nhé)
ĐKXĐ: \(a\ge0,a\ne9\)
a)\(P=\frac{2\sqrt{a}}{\sqrt{a}+3}+\frac{\sqrt{a}+1}{\sqrt{a}-3}+\frac{3+7\sqrt{a}}{9-a}.\)
\(=\frac{2\sqrt{a}\left(\sqrt{a}-3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}+\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}-\frac{3+7\sqrt{a}}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(=\frac{2\sqrt{a}\left(\sqrt{a}-3\right)+\left(\sqrt{a}+1\right)\left(\sqrt{a}+3\right)-\left(3+7\sqrt{a}\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(=\frac{2a-6\sqrt{a}+a+3\sqrt{a}+\sqrt{a}+3-3-7\sqrt{a}}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(=\frac{3a-9\sqrt{a}}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}=\frac{3\sqrt{a}\left(\sqrt{a}-3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(=\frac{3\sqrt{a}}{\sqrt{a}+3}\)
b) Để P<1 hay \(\frac{3\sqrt{a}}{\sqrt{a}+3}< 1\Leftrightarrow3\sqrt{a}< \sqrt{a}+3\Leftrightarrow\sqrt{a}< \frac{3}{2}\Leftrightarrow0\le a< \frac{9}{4}\)(thỏa mãn ĐKXĐ)
Vậy với \(0\le a< \frac{9}{4}\)thì P<1.
(p/s đừng ti ck cho câu trả lời này)
\(H=\sqrt{2+\sqrt{3}}.\sqrt{14-5\sqrt{3}}+\sqrt{2}.\)
\(2.H=\sqrt{2\left(2+\sqrt{3}\right)}.\sqrt{2\left(14-5\sqrt{3}\right)}+2\sqrt{2}\)
\(2H=\sqrt{3+2\sqrt{3}+1}.\sqrt{25-2.5.\sqrt{3}+3}+2\sqrt{2}\)
\(2H=\sqrt{\left(\sqrt{3}+1\right)^2}.\sqrt{\left(5-\sqrt{3}\right)^2}+2\sqrt{2}\)
\(2H=\left(\sqrt{3}+1\right)\left(5-\sqrt{3}\right)+2\sqrt{2}\)
\(2H=5\sqrt{3}-3+5-\sqrt{3}+2\sqrt{2}\)
\(2H=2+4\sqrt{3}+2\sqrt{2}\)
\(H=1+2\sqrt{3}+\sqrt{2}.\)
(P/S : đừng k cho câu trả lời này nhé)
\(dkxd\Leftrightarrow\hept{\begin{cases}x\ge0\\\sqrt{x}-2\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}}\)
\(A=\left(\frac{\sqrt{x}}{x-4}-\frac{2}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\right):\frac{1}{\sqrt{x}+2}.\)
\(=\left(\frac{\sqrt{x}}{x-4}-\frac{2\left(\sqrt{x}+2\right)}{x-4}+\frac{\sqrt{x}-2}{x-4}\right):\frac{1}{\sqrt{x}+2}\)
\(=\frac{\sqrt{x}-2\sqrt{x}-4+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}+2}{1}\)
\(=\frac{-6\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=-\frac{6}{\sqrt{x}-2}\)
\(A=\)\(\left(\frac{\sqrt{x}}{x-4}+\frac{2}{2-\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right)\)\(:\frac{1}{\sqrt{x}+2}\)
a,ĐKXĐ:\(\hept{\begin{cases}x\ge0\\2-\sqrt{x}\\x-4\ne0\end{cases}\ne0}\)\(\Rightarrow\)\(\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)
\(A=\)\(\left(\frac{\sqrt{x}}{x-4}+\frac{2}{2-\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right)\)\(:\frac{1}{\sqrt{x}+2}\)
\(A=\)\(\left(\frac{\sqrt{x}}{x-4}-\frac{2}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\right)\)\(.\left(\sqrt{x}+2\right)\)
\(A=\)\(\left(\frac{\sqrt{x}-2\left(\sqrt{x}+2\right)+\sqrt{x}-2}{x-4}\right)\)\(.\left(\sqrt{x}+2\right)\)
\(A=\)\(\left(\frac{\sqrt{x}-2\sqrt{x}-4+\sqrt{x}-2}{x-4}\right)\)\(.\left(\sqrt{x}+2\right)\)
\(A=\)\(\left(\frac{-6}{x-4}\right)\)\(.\left(\sqrt{x}+2\right)\)
\(A=\)\(\frac{-6}{\sqrt{x}-2}\)
b,\(x=9-4\sqrt{5}\)\(\Rightarrow\)\(A=\)\(\frac{-6}{\sqrt{9-4\sqrt{5}}-2}\)\(=\frac{-6}{\sqrt{5-2.2\sqrt{5}+4}-2}\)
\(A=\)\(\frac{-6}{\sqrt{\left(\sqrt{5}-2\right)^2}-2}\)\(=\frac{-6}{\sqrt{5}-2-2}\)\(=\frac{-6}{\sqrt{5}-4}\)
c,\(A>-1\)\(\Rightarrow\)\(\frac{-6}{\sqrt{x}-2}\)\(>-1\)\(\Rightarrow\)\(\frac{-6}{\sqrt{x}-2}+1>0\)
\(\Leftrightarrow\)\(\frac{-6+\sqrt{x}-2}{\sqrt{x}-2}>0\)
\(\Leftrightarrow\)\(\frac{\sqrt{x}-8}{\sqrt{x}-2}>0\)
Từ \(a+b+c=1\) thế vào biểu thức sau
\(\left(\frac{1}{a}-1\right)\left(\frac{1}{b}-1\right)\left(\frac{1}{c}-1\right)=\left(\frac{a+b+c}{a}-\frac{a}{a}\right)\left(\frac{a+b+c}{b}-\frac{b}{b}\right)\left(\frac{a+b+c}{c}-\frac{c}{c}\right)\)
\(=\frac{b+c}{a}.\frac{a+c}{b}.\frac{a+b}{c}=\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\)(1)
Với a,b,c>0 , Áp dụng bất đẳng thức AM-GM (cauchy) cho hai số không âm ta có:
\(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};a+c\ge2\sqrt{ac}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=8abc\)(2)
Từ (1) và (2) suy ra \(\left(\frac{1}{a}-1\right)\left(\frac{1}{b}-1\right)\left(\frac{1}{c}-1\right)\ge\frac{8abc}{abc}=8\)
Dấu '=' xảy ra khi \(\hept{\begin{cases}a=b=c\\a+b+c=1\end{cases}\Leftrightarrow}a=b=c=\frac{1}{3}\)
mình wên nữa: đừng ti ck cho câu trả lời này nhé