Chứng minh rằng tổng các bình phương của 6 số liên tiếp không phải là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(a^4+b^4\ge\dfrac{\left(a^2+b^2\right)^2}{2}\ge\dfrac{\left(\dfrac{\left(a+b\right)^2}{2}\right)^2}{2}=\dfrac{\left(a+b\right)^4}{8}\). Áp dụng cho biểu thức A, suy ra \(A\ge\dfrac{\left(x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}+2\right)^4}{8}\). Ta tìm GTNN của \(P=x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}+2\). Ta có
\(P=x^2+\dfrac{1}{16x^2}+y^2+\dfrac{1}{16y^2}+\dfrac{15}{16}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+2\)
\(P\ge2\sqrt{x^2.\dfrac{1}{16x^2}}+2\sqrt{y^2.\dfrac{1}{16y^2}}+\dfrac{15}{16}\left(\dfrac{\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2}{2}\right)+2\)
\(=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{15}{16}.\left(\dfrac{4^2}{2}\right)+2\) \(=\dfrac{21}{2}\). Do đó \(P\ge\dfrac{21}{2}\) \(\Leftrightarrow A\ge\dfrac{\left(\dfrac{17}{2}+2\right)^4}{8}\). Vậy GTNN của A là \(\dfrac{\left(\dfrac{17}{2}+2\right)^4}{8}\), ĐTXR \(\Leftrightarrow x=y=\dfrac{1}{2}\)
Lời giải:
Gọi chiều rộng mảnh đất là $a$ (m) thì chiều dài mảnh đất là $a+40$ (m)
Chiều dài bể: $(a+40-10-10)=a+20$ (m)
Chiều rộng bể: $a-10-10=a-20$ (m)
Diện tích bể: $(a+20)(a-20)=6000$
$\Leftrightarrow a^2-400=6000$
$\Leftrightarrow a^2=6400$
$\Rightarrow a=\sqrt{6400}=80$ (m)
Vậy chiều rộng mảnh vườn là $80$ m, chiều dài mảnh vườn là $80+40=120$ m
Khi thay dấu nhân thành các dấu cộng trừ, dù trường hợp như thế nào thì các kết quả phải cùng tính chẵn lẻ, do đó phải có 1 bạn sai
Mà xét tổng 100+99+98+...+2+1=5050 là số chẵn
Do đó khi thay toàn bộ dấu nhân bởi các dấu cộng và trừ, luôn đc kết quả là số chẵn
Vì vậy, Long đúng còn Tiến sai
Gợi ý: \(\dfrac{a^4+b^4}{2}\ge\left(\dfrac{a+b}{2}\right)^4\)
Ta dễ dàng kiểm tra được các số chính phương dạng \(\left(2n\right)^2\) luôn chia hết cho 4 còn các số chính phương dạng \(\left(2n+1\right)^2\) luôn chia 4 dư 1. Do trong 6 số liên tiếp luôn tồn tại 3 số chẵn và 3 số lẻ nên tổng của chúng sẽ chia 4 dư 3, do đó không phải là số chính phương.