Cho a,b,c>0 và abc=1. CMR: (a+b)(b+c)(c+a) \(\ge\) \(\dfrac{7}{3}\)(a+b+c) +1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: DA=DK
=>ΔDAK cân tại D
=>\(\widehat{DAK}=\widehat{DKA}\)
mà \(\widehat{DKA}=\widehat{KAB}\)(hai góc so le trong, AB//DK)
nên \(\widehat{DAK}=\widehat{BAK}\)
=>AK là phân giác của góc BAD
2: ta có: CD=CK+KD
CD=AD+BC
Do đó: CK+KD=AD+BC
mà DA=DK
nên CK=CB
3: CK=CB
=>ΔCBK cân tại C
=>\(\widehat{CKB}=\widehat{CBK}\)
mà \(\widehat{CKB}=\widehat{ABK}\)(hai góc so le trong, AB//CK)
nên \(\widehat{ABK}=\widehat{CBK}\)
=>BK là phân giác của góc ABC
1:ΔABC cân tại A
mà AH là đường trung tuyến
nên AH\(\perp\)BC tại H
Xét tứ giác AHCD có
O là trung điểm chung của AC và HD
=>AHCD là hình bình hành
Hình bình hành AHCD có \(\widehat{AHC}=90^0\)
nên AHCD là hình chữ nhật
2: AHCD là hình chữ nhật
=>AD//HC và AD=HC
Ta có: AD//HC
=>AD//HB
Ta có: AD=CH
mà CH=HB
nên AD=HB
Xét tứ giác ADHB có
AD//HB
AD=HB
Do đó: ADHB là hình bình hành
3: \(CH=\dfrac{CB}{2}=3\left(cm\right)\)
AHCD là hình chữ nhật
=>\(S_{AHCD}=AH\cdot HC=4\cdot3=12\left(cm^2\right)\)
a: Xét ΔBMO có \(\widehat{BMO}+\widehat{MBO}+\widehat{MOB}=180^0\)
=>\(\widehat{BMO}+\widehat{MOB}=180^0-60^0=120^0\)(1)
\(\widehat{MOB}+\widehat{MON}+\widehat{NOC}=180^0\)
=>\(\widehat{MOB}+\widehat{NOC}=180^0-60^0=120^0\left(2\right)\)
Từ (1),(2) suy ra \(\widehat{BMO}=\widehat{CON}\)
Xét ΔBMO và ΔCON có
\(\widehat{BMO}=\widehat{CON}\)
\(\widehat{MBO}=\widehat{OCN}\left(=60^0\right)\)
Do đó: ΔBMO~ΔCON
b: ΔBMO~ΔCON
=>\(\dfrac{OM}{ON}=\dfrac{BM}{CO}=\dfrac{BM}{BO}\)
c:
\(\dfrac{OM}{ON}=\dfrac{BM}{BO}\)
=>\(\dfrac{BM}{OM}=\dfrac{BO}{ON}\)
Xét ΔBMO và ΔOMN có
\(\dfrac{BM}{OM}=\dfrac{BO}{ON}\)
\(\widehat{MBO}=\widehat{MON}\left(=60^0\right)\)
Do đó: ΔBMO~ΔOMN
=>\(\widehat{BMO}=\widehat{OMN}\)
=>MO là phân giác của góc BMN
Xét ΔMIB có
MD là đường cao
MD là đường trung tuyến
Do đó: ΔMIB cân tại M
=>MI=MB
Xét ΔMKC có
ME là đường cao
ME là đường trung tuyến
Do đó: ΔMKC cân tại M
=>MK=MC
Ta có: MI=MK=MB=MC
=>I,K,B,C cùng thuộc đường tròn (M)
Gọi O là trung điểm của BD
Xét ΔABD có AB=AD và \(\widehat{BAD}=60^0\)
nên ΔABD đều
Xét ΔCBD có CB=CD và \(\widehat{BCD}=60^0\)
nên ΔBCD đều
ta có: ΔABD đều
mà DE là đường trung tuyến
nên DE\(\perp\)AB
=>ΔDEB vuông tại E
=>E nằm trên đường tròn đường kính BD(1)
Ta có: ΔABD đều
mà BH là đường trung tuyến
nên BH\(\perp\)AD tại H
=>ΔBHD vuông tại H
=>H nằm trên đường tròn đường kính BD(2)
Ta có: ΔCBD đều
mà DF là đường trung tuyến
nên DF\(\perp\)BC tại F
=>F nằm trên đường tròn đường kính BD(3)
Ta có: ΔCBD đều
mà BG là đường trung tuyến
nên BG\(\perp\)CD tại G
=>G nằm trên đường tròn đường kính BD(4)
Từ (1),(2),(3),(4) suy ra E,H,D,G,F,B cùng thuộc một đường tròn
Ta có:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)-1\)
\(\ge\left(a+b+c\right).3\sqrt[3]{ab.bc.ca}-1\)
\(=3\left(a+b+c\right)-1\)
\(=\dfrac{7}{3}\left(a+b+c\right)+\dfrac{2}{3}\left(a+b+c\right)-1\)
\(\ge\dfrac{7}{3}\left(a+b+c\right)+\dfrac{2}{3}.3\sqrt[3]{abc}-1\)
\(=\dfrac{7}{3}\left(a+b+c\right)+1\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)