tìm các số tự nhiên a, b, c, d biết:
\(\dfrac{30}{43}\) = \(\dfrac{1}{a+\dfrac{1}{b+\dfrac{1}{c+\dfrac{1}{d}}}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3}{-2}\) < 0 (phân số âm luôn nhỏ hơn 0)
\(\dfrac{4}{9}\) < \(\dfrac{4}{5}\) ( hai phân số dương, hai phân số có cùng tử số phân số nào có mẫu lớn hơn thì phân số đó nhỏ hơn)
0 < \(\dfrac{4}{9}\) (phân số dương luôn lớn hơn 0)
Từ những lập luận trên ta có:
\(\dfrac{3}{-2}< 0< \dfrac{4}{9}< \dfrac{4}{5}\)
Kết luận các phân số đã cho được sắp xếp theo thứ tự tăng dần là:
\(\dfrac{3}{-2}\); 0; \(\dfrac{4}{9}\); \(\dfrac{4}{5}\)
Chọn C. \(\dfrac{3}{-2}\); 0; \(\dfrac{4}{9}\); \(\dfrac{4}{5}\)
9/(7.10) + 9/(10.13) + 9/(13.16) + ... + 9/(58.61)
= 3.(1/7 - 1/10 + 1/10 - 1/13 + 1/13 - 1/16 + ... + 1/58 - 1/61)
= 3.(1/7 - 1/61)
= 3 . 54/427
= 162/427
\(\dfrac{9}{7.10}\) + \(\dfrac{9}{10.13}\) + \(\dfrac{9}{13.16}\) + ... + \(\dfrac{9}{58.61}\)
= 3.(\(\dfrac{3}{7.10}\) + \(\dfrac{3}{10.13}\) + \(\dfrac{3}{13.16}\) + ... + \(\dfrac{3}{58.61}\))
= 3.(\(\dfrac{1}{7}\) - \(\dfrac{1}{10}\) + \(\dfrac{1}{10}\) - \(\dfrac{1}{13}\) + \(\dfrac{1}{13}\) - \(\dfrac{1}{16}\) + ... + - \(\dfrac{1}{61}\))
= 3.(\(\dfrac{1}{7}\) - \(\dfrac{1}{61}\))
= 3.\(\dfrac{54}{427}\)
= \(\dfrac{162}{427}\)
9/(7.10) + 9/(10.13) + 9/(13.16) + ... + 9/(58.61)
= 3.(1/7 - 1/10 + 1/10 - 1/13 + 1/13 - 1/16 + ... + 1/58 - 1/61)
= 3.(1/7 - 1/61)
= 3 . 54/427
= 162/427
Lời giải:
$\frac{3}{7}-\frac{17}{7}=\frac{3-17}{7}=\frac{-14}{7}=-2$
ĐKXĐ: n<>3
Để A là số nguyên thì \(2n-1⋮3-n\)
=>\(2n-1⋮n-3\)
=>\(2n-6+5⋮n-3\)
=>\(5⋮n-3\)
=>\(n-3\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{4;2;8;-2\right\}\)
\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=1-\dfrac{1}{2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)
...
\(\dfrac{1}{n^2}< \dfrac{1}{\left(n-1\right)\cdot n}=\dfrac{1}{n-1}-\dfrac{1}{n}\)
Do đó: \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)
=>\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 1-\dfrac{1}{n}\)
=>\(\dfrac{1}{3^2}\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)< \dfrac{1}{9}-\dfrac{1}{9n^2}\)
=>\(S< \dfrac{1}{9}\)
a: Số học sinh xếp loại tốt là \(44\cdot\dfrac{1}{11}=4\left(bạn\right)\)
Số học sinh xếp loại khá là \(4\cdot\dfrac{11}{4}=11\left(bạn\right)\)
Số học sinh xếp loại đạt là 44-4-11=29(bạn)
b: Tỉ số phần trăm giữa số học sinh khá so với cả lớp là:
\(\dfrac{11}{44}=25\%\)