giúp mình câu này nhé, mình đang luyện thi học sinh giỏi, mình cảm ơn
cho tam giác ABC vuông tại A, đường cao AH. Lấy điểm M thuộc cạnh AC, điểm N thuộc tia đối của tia HA sao cho AC/AM = HA/HN = 3. Chứng minh tam giác BNM là tam giác vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}=\frac{x+y}{xy}+\frac{2}{x+y}$
$=x+y+\frac{2}{x+y}$
$=\frac{x+y}{2}+\frac{x+y}{2}+\frac{2}{x+y}$
$\geq \frac{x+y}{2}+2\sqrt{\frac{x+y}{2}.\frac{2}{x+y}}$ (áp dụng BDT Cô-si)
$\geq \frac{2\sqrt{xy}}{2}+2=\frac{2}{2}+2=3$
Vậy ta có đpcm
Dấu "=" xảy ra khi $x=y=1$
ĐKXĐ: x ≥ 0
P nhỏ nhất khi √x + 1 nhỏ nhất
Do x ≥ 0 nên √x + 1 ≥ 1
⇒ √x + 1 nhỏ nhất là 1 khi x = 0
⇒ GTNN của P là -3/(0 + 1) = -3 khi x = 0
A B C H D
Ta có
\(\dfrac{BD}{AB}=\dfrac{CD}{AC}\) (Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn ấy)
\(\Rightarrow\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{15}{20}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3AC}{4}\)
\(BC=BD+CD=15+20=35cm\)
Ta có
\(BC^2=AB^2+AC^2\) (Pitago)
\(\Rightarrow35^2=\left(\dfrac{3AC}{4}\right)^2+AC^2\Rightarrow AC^2=784\Rightarrow AC=28cm\)
Ta có
\(AC^2=CH.BC\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{784}{35}=22,4cm\)
\(\Rightarrow BH=BC-CH=35-22,4=12,6cm\)
Ta có
\(AH^2=BH.CH\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông bằng tích giữa các hình chiếu của 2 cạnh góc vuông trên cạnh huyền)
\(\Rightarrow AH^2=12,6^2+22,4^2=660,52\Rightarrow AH=\sqrt{660,52}\)
Ta có
\(HD=BD-BH=15-12,6=2,4cm\)
Xét tg vuông AHD có
\(AD^2=AH^2+HD^2\) (Pitago)
Bạn tự tính nốt nhé
Lời giải:
$S_{ABC}=AH.BC:2=12.20:2=120$ (cm2)
Thông tin A=90 độ không có ý nghĩa gì trong bài.