Tìm giá trị nhỏ nhất của biểu thức : A=2x2 - 5x +2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4x2 - 8x + 3
= 4x2 - 6x - 2x + 3
= ( 4x2 - 6x ) - ( 2x - 3 )
= 2x( 2x - 3 ) - ( 2x - 3 )
= ( 2x - 3 )( 2x - 1 )
\(4x^2-8x+3\)
\(=4x^2-2x-6x+3\)
\(=\left(4x^2-6x\right)-\left(2x-3\right)\)
\(=2x\left(2x-3\right)-\left(2x-3\right)\)
\(=\left(2x-1\right)\left(2x-3\right)\)
a) Xét tứ giác ABPD
Có AB // = 1/2 DC
=> AB //=DC
=> ABPD là hbh
Xét tam giác ABC
Có MN là đường trung bình => MN //=1/2 AC
Xét tam giác ACD có
PQ là đường trung bình => PQ//=1/2 AC
=> MN//=PQ => MNPQ là hbh
b) HÌnh thang cân
c) Trung điểm đc của hình thoi cũng là trung điểm của đường chéo còn lại
Xét tam giác ADP : Có QE là đường tb => QE //DP
Xét tam giác BCD có EN là đường tb => EN // DC
=> Q,N,E thẳng hàng
Ta có (10x2 - 7x - m) : (2x - 3) = 5x + 4 dư 12 + m
Để (10x2 - 7x - m) \(⋮\)(2x - 3)
=> m + 12 = 0
=> m = - 12
Vậy m = -12
10x^2 - 7x - m 2x - 3 5x + 4 10x^2 - 15x 8x - m 8x - 12 -m + 12
Để \(f\left(x\right)⋮g\left(x\right)\)<=>
\(12-m=0\Leftrightarrow m=12\)
a, \(A=\frac{x^2-10x+25}{3x^2-75}=\frac{\left(x-5\right)^2}{3\left(x^2-25\right)}=\frac{\left(x-5\right)^2}{3\left(x-5\right)\left(x+5\right)}=\frac{x-5}{3\left(x+5\right)}\)
b, Ta có x = -3/5
\(\frac{-\frac{3}{5}-5}{3\left(-\frac{3}{5}+5\right)}=\frac{-\frac{28}{5}}{3.\frac{22}{5}}=\frac{-\frac{28}{5}}{\frac{66}{5}}=-\frac{14}{825}\)
a, \(5\left(2x+1\right)-2x-1=16\)
\(\Leftrightarrow10x+5-2x-1-16=0\Leftrightarrow8x-12=0\Leftrightarrow x=\frac{3}{2}\)
b, \(4x\left(x+5\right)=3\left(x+5\right)\Leftrightarrow4x\left(x+5\right)-3\left(x+5\right)=0\)
\(\Leftrightarrow\left(4x-3\right)\left(x+5\right)=0\Leftrightarrow x=\frac{3}{4};-5\)
c, \(x\left(x-2\right)=3-6\Leftrightarrow x^2-2x+3=0\)
vô nghiệm
A = 2x2 - 5x + 2
= 2( x2 - 5/2x + 25/16 ) - 9/8
= 2( x - 5/4 )2 - 9/8 ≥ -9/8 ∀ x
Đẳng thức xảy ra <=> x = 5/4
=> MinA = -9/8, đạt được khi x = 5/4
\(A=2x^2-5x+2\)
\(=2\left(x^2-\frac{5}{2}x+1\right)\)
\(=2\left(x^2-2x\frac{5}{4}+\frac{25}{16}\right)-\frac{9}{8}\)
\(=2\left(x-\frac{5}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\forall x\)
Dấu"=" xảy ra khi \(x-\frac{5}{4}=0\Rightarrow x=\frac{5}{4}\)
Vậy \(Min_A=-\frac{9}{8}\Leftrightarrow x=\frac{5}{4}\)