Tính giá trị biểu thức
giúp em với tối em phải nộp rùi ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(f\left(x\right)=2x^2+\dfrac{2}{3}x^2-\dfrac{3}{5}+1-\left(-2\dfrac{1}{3}\right)x^2-1\dfrac{2}{5}x\)
\(=\left(2x^2+\dfrac{2}{3}x^2+\dfrac{7}{3}x^2\right)-\dfrac{7}{5}x+\dfrac{2}{5}\)
\(=5x^2-1,4x+0,4\)
\(g\left(x\right)=\dfrac{1}{3}\cdot\left(3x\right)^2+2\dfrac{1}{3}x-3-\left(-1\dfrac{2}{3}\right)x-5x^2\)
\(=\dfrac{1}{3}\cdot9x^2+\dfrac{7}{3}x-3+\dfrac{5}{3}x-5x^2\)
\(=-2x^2+4x-3\)
b: h(x)=f(x)+g(x)
\(=5x^2-1,4x+0,4-2x^2+4x-3\)
\(=3x^2+2,6x-2,6\)
k(x)=g(x)-f(x)
\(=-2x^2+4x-3-5x^2+1,4x-0,4\)
\(=-7x^2+5,4x-3,4\)
c: \(h\left(2\right)=3\cdot2^2+2,6\cdot2-2,6=12+2,6=14,6\)
\(k\left(-2\right)=-7\cdot\left(-2\right)^2+5,4\cdot\left(-2\right)-3,4\)
=-28-10,8-3,4
=-28-14,2
=-42,2
a: B là trung điểm của AD
=>\(AB=BD=\dfrac{AD}{2}=\dfrac{9.6}{2}=4,8\left(cm\right)\)
b: C là trung điểm của BD
=>CB=CD=BD/2=2,4(cm)
Vì BA và BD là hai tia đối nhau
và \(C\in BD\)
nên BC và BA là hai tia đối nhau
=>B nằm giữa A và C
=>AC=AB+BC=4,8+2,4=7,2(cm)
C = 202.25 + 303.9 - 101.67
C = 101.2.25 + 101.3.9 - 101.67
C = 101.(2.25 + 3.9 - 67)
C = 101.(50 + 27 - 67)
C = 101. 10
C = 1010
\(\dfrac{4}{1.5}\) + \(\dfrac{4}{5.9}\) + \(\dfrac{4}{9.13}\) + \(\dfrac{4}{13.17}\) + ... + \(\dfrac{4}{99.103}\)
= \(\dfrac{1}{1}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{9}\) + \(\dfrac{1}{9}\) - \(\dfrac{1}{13}\) + \(\dfrac{1}{13}\) - \(\dfrac{1}{17}\) + \(\dfrac{1}{99}\) - \(\dfrac{1}{103}\)
= \(\dfrac{1}{1}\) - \(\dfrac{1}{103}\)
= \(\dfrac{102}{103}\)
Giải:
Theo bài ra ta có: \(\left\{{}\begin{matrix}a=12.k\\b=12.d\end{matrix}\right.\) (k; d) = 1; k;d \(\in\) N*
12k.12.d = 180.12
k.d = 180.12 : (12.12) = 15
Ư(15) = {1; 3; 5; 15}
Lập bảng ta có:
k.d | 15 | 15 | 15 | 15 |
k | 1 | 3 | 5 | 15 |
d | 15 | 5 | 3 | 1 |
(k;d)=1 | nhận | nhận | nhận | nhận |
Theo bảng trên ta có: (k;d) =(1; 15); (3; 5); (5; 3); (15; 1)
Vậy: (a;b) = (12; 180); (36; 60); (60; 36); (180; 12)
Vì \(AI=\dfrac{1}{3}AC\)
nên \(S_{ABI}=\dfrac{1}{3}\cdot S_{ABC}=\dfrac{1}{3}\cdot120=40\left(cm^2\right)\)
Vì D là trung điểm của AB nên AD=1/2BA
=>\(S_{ADI}=\dfrac{1}{2}\cdot S_{ABI}=\dfrac{1}{2}\cdot40=20\left(cm^2\right)\)
Gọi độ dài quãng đường AB là x(km)
(Điều kiện: x>0)
Thời gian đi từ A đến B là \(\dfrac{x}{40}\left(giờ\right)\)
Thời gian đi từ B về A là \(\dfrac{x}{32}\left(giờ\right)\)
Thời gian đi ít hơn thời gian về là 1 giờ nên \(\dfrac{x}{32}-\dfrac{x}{40}=1\)
=>\(\dfrac{5x-4x}{160}=1\)
=>\(\dfrac{x}{160}=1\)
=>x=160(nhận)
vậy: Độ dài quãng đường AB là 160km
Giải:
Cùng một quãng đường vận tốc tỉ lệ nghịch với thời gian.
Tỉ số thời gian lúc đi và thời gian lúc về là: 32 : 40 = \(\dfrac{4}{5}\)
Gọi thời gian lúc đi là t (giờ); t > 0
Thì thời gian lúc về là: 1 : \(\dfrac{4}{5}\) x t = \(\dfrac{5}{4}\)t
Theo bài ra ta có: \(\dfrac{5}{4}\)t - t = 1
t.(\(\dfrac{5}{4}-1\)) =1
\(\dfrac{1}{4}\)t = 1
t = 4 x 1
t = 4
Vậy Thời gian đi từ A đến B là 4 giờ.
Quãng đường từ A đến B dài là: 4 x 40 = 160 (km)
Kết luận: Quãng đường AB dài 160 km.
Câu a tự làm;
Câu b:
Hoành độ giao điểm là nghiệm của phương trình:
\(x^2\) = - 2\(x\) + 3
\(x^2\) + 2\(x\) - 3 = 0
a + b - c = 1 + 2 - 3 = 0
Phương trình có hai nghiệm phân biệt là:
\(x_1\) = 1; \(x_2\) = -3
\(x_1\) = 1 ⇒ y1 = (1)2 = 1
\(x_2\) = - 3 ⇒ y2 = (-3)2 = 9
Vậy (P) và (d) cắt nhau tai hai điểm có tọa độ lần lượt là:
A(1; 1); B(-3; 9)
a:
b: Phương trình hoành độ giao điểm là:
\(x^2=-2x+3\)
=>\(x^2+2x-3=0\)
=>(x+3)(x-1)=0
=>\(\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)
Thay x=-3 vào y=-2x+3, ta được:
\(y=-2\cdot\left(-3\right)+3=9\)
Thay x=1 vào y=-2x+3, ta được:
\(y=-2\cdot1+3=1\)
Vậy: (d) cắt (P) tại A(-3;9); B(1;1)
vậy hiệu hai số là : 125 x 2 =250
Số bé là : 4083-250=3833
Tổng là:4083+3833=7916
vậy hiệu hai số là : 125 x 2 =250
Số bé là : 4083-250=3833
Tổng là:4083+3833=7916
Đáp số:....
Đây nha em
Bài 3:
\(A=3x^3+6x^2-3x-x^3+\dfrac{1}{2}\)
\(=\left(3x^3-x^3\right)+6x^2-3x+\dfrac{1}{2}\)
\(=2x^3+6x^2-3x+\dfrac{1}{2}\)
Thay x=2 vào A, ta được:
\(A=2\cdot2^3+6\cdot2^2-3\cdot2+\dfrac{1}{2}=16+24-6+0,5\)
=34,5
Thay x=-1/3 vào A, ta được:
\(A=2\cdot\left(-\dfrac{1}{3}\right)^3+6\cdot\left(-\dfrac{1}{3}\right)^2-3\cdot\dfrac{-1}{3}+\dfrac{1}{2}\)
\(=-\dfrac{2}{27}+6\cdot\dfrac{1}{9}+1+\dfrac{1}{2}\)
\(=\dfrac{-2}{27}+\dfrac{2}{3}+\dfrac{3}{2}\)
\(=\dfrac{-2+18}{27}+\dfrac{3}{2}=\dfrac{16}{27}+\dfrac{3}{2}=\dfrac{32+81}{54}=\dfrac{113}{54}\)