Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐKXĐ: $x\neq -2$
$A=\frac{2x+4}{x+2}=\frac{2(x+2)}{x+2}=2$
A = \(\dfrac{2x+4}{x+2}\) (đk \(x\ne\) -2)
A = \(\dfrac{2.\left(x+4\right)}{x+2}\)
A = 2
Lời giải:
Để $(d_2)\parallel (d_1)$ thì:
\(\left\{\begin{matrix} -7=2m+5\\ 2\neq -3\end{matrix}\right.\Leftrightarrow -7=2m+5\Leftrightarrow m=-6\)
\(x^2\) + 3 = 0
\(x^2\) ≥ 0 \(\forall\) \(x\)
\(x^2\) + 3 ≥ 3 > 0 ∀ \(x\)
Vậy phương trình vô nghiệm.
a: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
\(\dfrac{HA}{HC}=\dfrac{HB}{HA}\left(\dfrac{12}{9}=\dfrac{16}{12}=\dfrac{4}{3}\right)\)
Do đó: ΔHAB~ΔHCA
=>\(\widehat{HAB}=\widehat{HCA}\)
mà \(\widehat{HAB}+\widehat{HBA}=90^0\)(ΔHAB vuông tại H)
nên \(\widehat{HBA}+\widehat{HCA}=90^0\)
=>ΔABC vuông tại A
b:
Xét ΔHAB có
M,N lần lượt là trung điểm của HA,HB
=>MN là đường trung bình của ΔHAB
=>MN//AB
Ta có: MN//AB
AB\(\perp\)AC
Do đó: MN\(\perp\)AC
Xét ΔCAN có
NM,AH là các đường cao
NM cắt AH tại M
Do đó: M là trực tâm của ΔCAN
=>CM\(\perp\)AN
Câu 1: D
Câu 2: C
Câu 3: A
Câu 4: D
Câu 5: B
Câu 6: D
Câu 7: B
Câu 8: A
Câu 12:
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=15^2-9^2=144=12^2\)
=>AC=12(cm)
b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC~ΔHBA
c: Ta có: \(\widehat{BDE}+\widehat{ABD}=90^0\)(ΔABD vuông tại A)
\(\widehat{BEH}+\widehat{HBE}=90^0\)(ΔBHE vuông tại H)
mà \(\widehat{HBE}=\widehat{ABD}\)
nên \(\widehat{BDE}=\widehat{BEH}\)
=>\(\widehat{ADE}=\widehat{AED}\)
=>ΔADE cân tại A
Ta có: ΔADE cân tại A
mà AI là đường trung tuyến
nên AI\(\perp\)DE
Xét ΔEIA vuông tại I và ΔEHB vuông tại H có
\(\widehat{IEA}=\widehat{HEB}\)(hai góc đối đỉnh)
Do đó: ΔEIA~ΔEHB
=>\(\dfrac{EI}{EH}=\dfrac{EA}{EB}\)
=>\(\dfrac{EI}{EA}=\dfrac{EH}{EB}\)
d: Xét tứ giác BAIH có \(\widehat{BHA}=\widehat{BIA}=90^0\)
nên BAIH là tứ giác nội tiếp
=>\(\widehat{BIH}=\widehat{BAH}\)
mà \(\widehat{BAH}=\widehat{C}\)
nên \(\widehat{BIH}=\widehat{C}\)