Chứng minh đẳng thức này giúp tớ với các cậu oi
\(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\cdot\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}+1}\right)=1-a\) ( với đk a ≥ 0 và a ≠ 1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{29+12\sqrt{5}}+\sqrt{29-12\sqrt{5}}\)
\(=\sqrt{20+2\cdot2\sqrt{5}\cdot3+9}+\sqrt{20-2\cdot2\sqrt{5}\cdot3+9}\)
\(=\sqrt{\left(2\sqrt{5}+3\right)^2}+\sqrt{\left(2\sqrt{5}-3\right)^2}\)
\(=2\sqrt{5}+3+2\sqrt{5}-3=4\sqrt{5}\)
`sqrt{29 + 12 sqrt{5}} + sqrt{29 - 12sqrt{5}}`
`= sqrt{20 + 2 . 2sqrt{5} . 3 + 9 } + sqrt{20 - 2 . 2sqrt{5} . 3 + 9}`
`= sqrt{(2sqrt{5})^2 + 2 . 2sqrt{5} . 3 + 3^2 } + sqrt{(2sqrt{5})^2 - 2 . 2sqrt{5} . 3 + 3^2}`
`= sqrt{(2sqrt{5} + 3)^2} + sqrt{(2sqrt{5} - 3)^2}`
`= |2sqrt{5} + 3| + |2sqrt{5} + 3|`
`= 2sqrt{5} + 3 + 2sqrt{5} - 3`
`= 4 sqrt{5}`
Gọi số học sinh nam của lớp đó là `a` (học sinh)
Số học sinh nữ của lớp đó là `b` (học sinh)
ĐK: `0<a,b<43` và `a,b∈N`
Số học sinh nam hơn số học sinh nữ là 3 hs nên ta có pt:
`a-b=3(1)`
Số học sinh của lớp là 43 học sinh nên ta có pt:
`a+b=43(2) `
Từ (1) và (2) ta có hpt: \(\left\{{}\begin{matrix}a-b=3\\a+b=43\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a=46\\b=a-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=23\\b=23-3=20\end{matrix}\right.\left(tm\right)\)
Vậy: ...
A B C a b c H
Dựng \(BH\perp AC\left(H\in AC\right)\)
Xét tg vuông BHC có
\(BC^2=BH^2+CH^2\) (Pitago)
\(\Rightarrow a^2=BH^2+\left(AC-AH\right)^2=BH^2+AC^2+AH^2-2AC.AH=\)
\(=\left(BH^2+AH^2\right)+AC^2-2AC.AH\) (1)
Xét tg vuông AHB có
\(BH^2+AH^2=AB^2=c^2\)
\(AH=AB\cos A=c\cos A\)
Thay vào (1)
\(\Rightarrow a^2=b^2+c^2-2bc\cos A\)
sin a=0,3
=>\(a=arcsin\left(0,3\right)\simeq17^0\)
cos a=0,45
=>\(a=arccos\left(0,45\right)\simeq63^0\)
\(tana=2,5\)
=>\(a=arctan\left(2,5\right)\simeq68^0\)
Xét ΔAHB vuông tại H có \(tanBAH=\dfrac{BH}{AH}\)
=>\(BH=AH\cdot tanBAH=4\cdot tan28\simeq2,13\left(cm\right)\)
Xét ΔAHC vuông tại H có
\(tanC=\dfrac{AH}{HC}\)
=>\(HC=\dfrac{AH}{tanC}=\dfrac{4}{tan40}\simeq4,77\left(cm\right)\)
ΔAHB vuông tại H
=>\(AH^2+HB^2=AB^2\)
=>\(AB=\sqrt{AH^2+HB^2}\simeq4,53\left(cm\right)\)
ΔAHC vuông tại H
=>\(AH^2+HC^2+AC^2\)
=>\(AC=\sqrt{AH^2+HC^2}\simeq6,23\left(cm\right)\)
Để hệ có nghiệm duy nhất thì \(\dfrac{a+1}{1}\ne\dfrac{-a}{a}=-1\)
=>\(a+1\ne-1\)
=>\(a\ne-2\)
\(\left\{{}\begin{matrix}\left(a+1\right)x-ay=5\\x+ay=a^2+4a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(a+1\right)x-ay+x+ay=5+a^2+4a\\x+ay=a^2+4a\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(a+2\right)=a^2+4a+5\\ay=a^2+4a-x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{a^2+4a+5}{a+2}\\ay=a^2+4a-\dfrac{a^2+4a+5}{a+2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{a^2+4a+5}{a+2}\\ay=\dfrac{\left(a+2\right)\left(a^2+4a\right)-a^2-4a-5}{a+2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{a^2+4a+5}{a+2}\\y=\dfrac{a^3+4a^2+2a^2+8a-a^2-4a-5}{a\left(a+2\right)}=\dfrac{a^3+5a^2+4a-5}{a\left(a+2\right)}\end{matrix}\right.\)
Để x,y nguyên thì \(\left\{{}\begin{matrix}a^2+4a+5⋮a+2\\a^3+5a^2+4a-5⋮a^2+2a\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a^2+4a+4+1⋮a+2\\a^3+5a^2+4a-5⋮a^2+2a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1⋮a+2\\a^3+5a^2+4a-5⋮a^2+2a\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a+2\in\left\{1;-1\right\}\\a^3+5a^2+4a-5⋮a^2+2a\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a\in\left\{-1;-3\right\}\\a^3+5a^2+4a-5⋮a^2+2a\end{matrix}\right.\Leftrightarrow a=-1\)
a:
b: Phương trình hoành độ giao điểm là:
-2x-4=x-1
=>-2x-x=-1+4
=>-3x=3
=>x=-1
Thay x=-1 vào y=x-1, ta được:
y=-1-1=-2
Vậy: Tọa độ giao điểm là A(-1;-2)
ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\ne4\end{matrix}\right.\)
\(P=\left(\dfrac{2}{x-4}+\dfrac{1}{\sqrt{x}+2}\right):\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+2}{1}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
Để P=3/2 thì \(\dfrac{\sqrt{x}}{\sqrt{x}-2}=\dfrac{3}{2}\)
=>\(3\left(\sqrt{x}-2\right)=2\sqrt{x}\)
=>\(3\sqrt{x}-2\sqrt{x}=6\)
=>\(\sqrt{x}=6\)
=>x=36(nhận)
Xét tứ giác ADHE có \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
nên ADHE là hình chữ nhật
=>AH=DE
Xét ΔABH vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\)
\(AD\cdot AB+AE\cdot AC=AH^2+AH^2\)
\(=2AH^2=2DE^2\)
\(VT=\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\cdot\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)\\ =\left[1+\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right]\cdot\left[1-\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right]\\ =\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)\\ =1-\left(\sqrt{a}\right)^2\\ =1-a=VP\)