Câu 18. Nếu -30m biểu diễn độ sâu 30m dưới mực nước biển thì +20m biểu diễn độ cao là: A. - 40m dưới mực nước biển B. 20m dưới mực nước biển C. - 20m trên mực nước biển D. 20m trên mực nước biển
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{\left(x^2+8x+7\right)\left(x+3\right)\left(x+5\right)+15}{x^3+8x^2+10x}\)
\(=\dfrac{\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15}{x\left(x^2+8x+10\right)}\)
\(=\dfrac{\left(x^2+8x\right)^2+22\left(x^2+8x\right)+105+15}{x\left(x^2+8x+10\right)}\)
\(=\dfrac{\left(x^2+8x\right)^2+22\left(x^2+8x\right)+120}{x\left(x^2+8x+10\right)}=\dfrac{\left(x^2+8x+10\right)\left(x^2+8x+12\right)}{x\left(x^2+8x+10\right)}\)
\(=\dfrac{x^2+8x+12}{x}\)
Olm chào em, em cần làm gì với biểu thức này?
Giải:
Chiều cao của tam giác là:
5 x 2 : 2 = 5(m)
Diện tích tam giác là:
6 x 5 : 2 =15 (m\(^2\))
Đáp số: 15m\(^2\)
3\(x\) = 5y; \(x+y=40\)
3\(x\) = 5y suy ra: \(x=\frac53\)y thay vào \(x+y=40\) ta được:
\(\frac53y+y=40\)
8y = 120
y = \(\frac{120}{8}\)
y = 15 thay vào \(x=\frac53y\) ta được \(x=\) \(\frac53\times15=25\)
Vậy (\(x;y\) ) = (25; 15)
P=a 2 +b 2 +ab−20a−19b+2151 Bước 1: Phân tích biểu thức và áp dụng phương pháp đạo hàm Ta có thể tìm giá trị nhỏ nhất của biểu thức 𝑃 P bằng cách tính các đạo hàm riêng của 𝑃 P theo 𝑎 a và 𝑏 b, sau đó giải hệ phương trình. Bước 2: Tính đạo hàm riêng của 𝑃 P Đạo hàm riêng của 𝑃 P theo 𝑎 a: ∂ 𝑃 ∂ 𝑎 = 2 𝑎 + 𝑏 − 20 ∂a ∂P =2a+b−20 Đạo hàm riêng của 𝑃 P theo 𝑏 b: ∂ 𝑃 ∂ 𝑏 = 2 𝑏 + 𝑎 − 19 ∂b ∂P =2b+a−19 Bước 3: Giải hệ phương trình đạo hàm Để tìm các giá trị cực trị (giá trị nhỏ nhất hoặc lớn nhất của 𝑃 P), ta giải hệ phương trình đạo hàm: { 2 𝑎 + 𝑏 − 20 = 0 𝑎 + 2 𝑏 − 19 = 0 { 2a+b−20=0 a+2b−19=0 Từ phương trình đầu tiên: 2 𝑎 + 𝑏 = 20 2a+b=20, ta suy ra: 𝑏 = 20 − 2 𝑎 b=20−2a Thay vào phương trình thứ hai: 𝑎 + 2 ( 20 − 2 𝑎 ) − 19 = 0 a+2(20−2a)−19=0 𝑎 + 40 − 4 𝑎 − 19 = 0 a+40−4a−19=0 − 3 𝑎 + 21 = 0 −3a+21=0 𝑎 = 7 a=7 Thay giá trị 𝑎 = 7 a=7 vào phương trình 𝑏 = 20 − 2 𝑎 b=20−2a: 𝑏 = 20 − 2 × 7 = 6 b=20−2×7=6 Bước 4: Tính giá trị của 𝑃 P Thay 𝑎 = 7 a=7 và 𝑏 = 6 b=6 vào biểu thức 𝑃 P: 𝑃 = 7 2 + 6 2 + 7 × 6 − 20 × 7 − 19 × 6 + 2151 P=7 2 +6 2 +7×6−20×7−19×6+2151 𝑃 = 49 + 36 + 42 − 140 − 114 + 2151 P=49+36+42−140−114+2151 𝑃 = 49 + 36 + 42 − 140 − 114 + 2151 = 2024 P=49+36+42−140−114+2151=2024 Kết luận: Giá trị nhỏ nhất của 𝑃 P là 2024 2024 .
bán kính bề mặt trang trí là :
`0,6: 2 = 0,3(dm)`
phần bề mặt trăng trí là :
`0,3 xx 0,3 xx 3,14 = 0,2826(dm^2)`
Đáp số :`0,2826dm^2`
D. 20 m trên mực nước biển
Nếu -30 biểu diễn độ sâu 30m dưới mặt nước biển, thì +20 biểu diễn độ cao 20m trên mặt nước biển, tức là một vị trí cao hơn mặt nước biển 20m.
Bài này chọn câu D nha