giúp mình với các bạn ơi
Tính
B=(1/2^2-1)x(1/3^2-1)x(1/4^2-1)...(1/1000^2-1)
cảm ơn nhìu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: \(3\in N;3\in Z;3\in Q\)
b: \(10\in N;10\in Z;10\in Q\)
c: \(-\dfrac{3}{7}\in Q\)
d: \(-2\in Z;-2\in Q\)
Bài 2:
\(\dfrac{-3}{5}=\dfrac{-27}{45};\dfrac{-5}{9}=\dfrac{-25}{45};-1\dfrac{2}{3}=\dfrac{-5}{3}=\dfrac{-75}{45};0,5=\dfrac{22,5}{45};\dfrac{10}{9}=\dfrac{50}{45}\)
mà -75<-27<-25<22,5<50
nên \(-1\dfrac{2}{3}< -\dfrac{3}{5}< -\dfrac{5}{9}< \dfrac{1}{2}< \dfrac{10}{9}\)
Bài 1:
a: \(\dfrac{9}{70}=\dfrac{9\cdot3}{70\cdot3}=\dfrac{27}{210};\dfrac{5}{42}=\dfrac{5\cdot5}{42\cdot5}=\dfrac{25}{210}\)
mà 27>25
nên \(\dfrac{9}{70}>\dfrac{5}{42}\)
b: \(\dfrac{-4}{27}=\dfrac{-4\cdot7}{27\cdot7}=\dfrac{-28}{189};\dfrac{10}{-63}=\dfrac{-10}{63}=\dfrac{-10\cdot3}{63\cdot3}=\dfrac{-30}{189}\)
mà -28>-30
nên \(\dfrac{-4}{27}>\dfrac{10}{-63}\)
c: \(\dfrac{999}{556}=1+\dfrac{443}{556};\dfrac{1000}{557}=1+\dfrac{443}{557}\)
mà \(\dfrac{443}{556}>\dfrac{443}{557}\)
nên \(\dfrac{999}{556}>\dfrac{1000}{557}\)
d: \(\dfrac{-2}{15}< 0;\dfrac{-10}{-11}=\dfrac{10}{11}>0\)
Do đó: \(\dfrac{-2}{15}< \dfrac{-10}{-11}\)
a: Xét ΔAMC và ΔDMB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔAMC=ΔDMB
b: ΔAMC=ΔDMB
=>\(\widehat{MAC}=\widehat{MDB}\)
=>AC//DB
mà AC\(\perp\)AB
nên BD\(\perp\)BA
c: Xét ΔCAB vuông tại A và ΔDBA vuông tại B có
BA chung
AC=BD
Do đó: ΔCAB=ΔDBA
=>CB=DA
mà \(AM=\dfrac{1}{2}AD\)
nên \(AM=\dfrac{1}{2}CB\)
Xét ΔABE có: \(\widehat{BAE}+\widehat{ABE}+\widehat{AEB}=180^o\)
\(\Rightarrow90^o+x+x=180^o\Rightarrow2x=180^o-90^o=90^o\)
\(\Rightarrow x=\dfrac{90^o}{2}=45^o\)
Xét ΔABC có: \(\widehat{ABC}+\widehat{BAC}+\widehat{CAB}=180^o\)
\(\Rightarrow\left(x+y\right)+90^o+30^o=180^o\)
\(\Rightarrow\left(x+y\right)+120^o=180^o\)
\(\Rightarrow45^o+y=180^o-120^o\)
\(\Rightarrow45^o+y=60^o\)
\(\Rightarrow y=60^o-45^o=15^o\)
∆ABE vuông tại A (gt)
⇒ ∠ABE + ∠AEB = 90⁰
⇒ x + x = 90⁰
⇒ x = 90⁰ : 2
= 45⁰
∆ABC vuông tại A (gt)
⇒ ∠ABC + ∠ACB = 90⁰
⇒ ∠ABC = 90⁰ - ∠ACB
= 90⁰ - 30⁰
= 60⁰
⇒ y = ∠ABC - x
= 60⁰ - 45⁰
= 15⁰
a)
\(\left(\dfrac{1}{12}+3\dfrac{1}{6}-30,3\right)x-8=\left(\dfrac{3}{5}+0,415+\dfrac{1}{200}\right):0,01\\ \Rightarrow\left(\dfrac{1}{12}+\dfrac{19}{6}-\dfrac{303}{10}\right)x-8=\left(\dfrac{3}{5}+0,415+\dfrac{1}{200}\right)\cdot100\\ \Rightarrow-\dfrac{541}{20}x-8=\dfrac{51}{50}\cdot100\\ \Rightarrow-\dfrac{541}{20}x-8=102\\ \Rightarrow-\dfrac{541}{20}x=110\\ \Rightarrow x=110:-\dfrac{541}{20}\\\Rightarrow x=-\dfrac{2200}{541}\approx4,067\)
b)
\(\left(\dfrac{1}{12}+2\dfrac{1}{12}-10,75\right)x-7=\left(\dfrac{2}{5}+\dfrac{3}{8}+0,225\right):0,1\\ \Rightarrow\left(\dfrac{1}{12}+\dfrac{25}{12}-\dfrac{43}{4}\right)x-7=\left(\dfrac{2}{5}+\dfrac{3}{8}+\dfrac{9}{40}\right)\cdot10\\ \Rightarrow-\dfrac{103}{12}x=1\cdot10\\ \Rightarrow x=10:-\dfrac{103}{12}\\ \Rightarrow x=-\dfrac{120}{103}\\ \Rightarrow x\approx-1,165\)
c)
\(\left(\dfrac{3}{5\cdot7}+\dfrac{3}{7\cdot9}+...+\dfrac{3}{59\cdot61}\right)\left(x-3\right)=\dfrac{21}{13}\\ \Rightarrow\dfrac{3}{2}\left(\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+...+\dfrac{2}{59\cdot61}\right)\left(x-3\right)=\dfrac{21}{13}\\ \Rightarrow\dfrac{3}{2}\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\left(x-3\right)=\dfrac{21}{13}\\\Rightarrow \dfrac{3}{2}\left(\dfrac{1}{5}-\dfrac{1}{61}\right)\left(x-3\right)=\dfrac{21}{13}\\ \Rightarrow\dfrac{84}{305}\left(x-3\right)=\dfrac{21}{13}\\ \Rightarrow x-3=\dfrac{21}{13}:\dfrac{84}{305}\\ \Rightarrow x-3=\dfrac{305}{52}\\ \Rightarrow x=\dfrac{305}{52}+3\\ \Rightarrow x=\dfrac{461}{52}\\ \Rightarrow x\approx8,865\)
Bài 10:
\(A=\dfrac{2^{12}\cdot3^5-4^6\cdot81}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}\\ =\dfrac{2^{12}\cdot3^5-\left(2^2\right)^6\cdot3^4}{\left(2^2\right)^6\cdot3^6+\left(2^3\right)^4\cdot3^5}\\ =\dfrac{2^{12}\cdot3^5-2^{12}\cdot3^4}{2^{12}\cdot3^6+2^{12}\cdot3^5}\\ =\dfrac{2^{12}\cdot3^4\cdot\left(3-1\right)}{2^{12}\cdot3^5\cdot\left(3+1\right)}\\ =\dfrac{3-1}{3\cdot\left(3+1\right)}\\ =\dfrac{2}{3\cdot4}\\ =\dfrac{1}{6}\)
\(B=\dfrac{30\cdot4^7\cdot3^{29}-5\cdot14^5\cdot2^{12}}{54\cdot6^{14}\cdot9^7-12\cdot8^5\cdot7^5}\\ =\dfrac{2\cdot3\cdot5\cdot\left(2^2\right)^7\cdot3^{29}-5\cdot2^5\cdot7^5\cdot2^{12}}{2\cdot3^3\cdot2^{14}\cdot3^{14}\cdot\left(3^2\right)^7-2^2\cdot3\cdot\left(2^3\right)^5\cdot7^5\cdot}\\ =\dfrac{3^{30}\cdot2^{15}\cdot5-5\cdot2^{17}\cdot7^5}{2^{15}\cdot3^{17}\cdot3^{14}-2^{17}\cdot7^5\cdot3}\\ =\dfrac{3^{30}\cdot2^{15}\cdot5-5\cdot2^{17}\cdot7^5}{2^{15}\cdot3^{31}-2^{17}\cdot7^5\cdot3}\\ =\dfrac{5\cdot\left(3^{30}\cdot2^{15}-2^{17}\cdot7^5\right)}{3\cdot\left(2^{15}\cdot3^{30}-2^{17}\cdot7^5\right)}\\ =\dfrac{5}{3}\)
Bài 8:
\(\left\{{}\begin{matrix}x+y=\dfrac{1}{2}\\y+z=\dfrac{1}{3}\\x+z=\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=\dfrac{1}{2}\\y=\dfrac{1}{3}-z\\x=\dfrac{1}{6}-z\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{1}{3}-z+\dfrac{1}{6}-z=\dfrac{1}{2}\\y=\dfrac{1}{3}-z\\x=\dfrac{1}{6}-z\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}-2z=\dfrac{1}{2}\\y=\dfrac{1}{3}-z\\x=\dfrac{1}{6}-z\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2z=0\\y=\dfrac{1}{3}-z\\x=\dfrac{1}{6}-z\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}z=0\\y=\dfrac{1}{3}-0=\dfrac{1}{3}\\x=\dfrac{1}{6}-0=\dfrac{1}{6}\end{matrix}\right.\)
Bài 5:
\(A=\left(\dfrac{3}{2}-\dfrac{2}{5}+\dfrac{1}{10}\right):\left(\dfrac{3}{2}-\dfrac{2}{3}+\dfrac{1}{12}\right)\)
\(=\dfrac{15-4+1}{10}:\dfrac{9-4+1}{12}\)
\(=\dfrac{12}{10}\cdot\dfrac{12}{6}=\dfrac{6}{5}\cdot2=\dfrac{12}{5}\)
\(S=1+2+2^2+2^3+...+2^{2009}+2^{2008}\\ 2S=2\left(1+2+2^2+...+2^{2008}\right)\\ 2S=2+2^2+2^3+...+2^{2009}\\ 2S-S=\left(2+2^2+2^3+...+2^{2009}\right)-\left(1+2+2^2+...+2^{2008}\right)\\ S=2^{2009}-1\)
\(-\dfrac{25}{20}>0\)
\(\dfrac{20}{25}>0\)
\(\Rightarrow-\dfrac{25}{20}< \dfrac{20}{25}\)
\(\dfrac{x}{7}+\dfrac{2}{y}=\dfrac{-1}{15}\)
=>\(\dfrac{xy+14}{7y}=\dfrac{-1}{15}\)
=>\(15\left(xy+14\right)+7y=0\)
=>\(15xy+7y=-210\)
=>y(15x+7)=-210
mà 15x+7 chia 15 dư 7
nên \(\left(15x+7;y\right)\in\left\{\left(7;-30\right)\right\}\)
=>\(\left(x;y\right)\in\left(0;-30\right)\)
\(B=\left(\dfrac{1}{2^2}-1\right)\cdot\left(\dfrac{1}{3^2}-1\right)\cdot...\cdot\left(\dfrac{1}{1000^2}-1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\cdot\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{1000}-1\right)\cdot\left(\dfrac{1}{2}+1\right)\cdot\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{1000}+1\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-999}{1000}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot....\cdot\dfrac{1001}{1000}\)
\(=\dfrac{-1}{1000}\cdot\dfrac{1001}{2}=\dfrac{-1001}{2000}\)
Thanks