cho tam giác abc vuông tại a biết ab=6cm và ac=8cm trên ac lấy một điểm bất kì và vẽ đường tròn đường kính mc nối b và m cắt đường tròn tại d CM: a,ABCD là tứ giác nội tiếp b,CD.AM=BA.DM c,khi quay tam giác vuông ABC một vòng quanh cạnh AC cố định hãy tính diện tích xung quanh của hình tạo thành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề; OA=2R
ΔOAB vuông tại B
=>\(OB^2+BA^2=OA^2\)
=>\(BA^2=\left(2R\right)^2-R^2=3R^2\)
=>\(BA=R\sqrt{3}\)
Xét ΔOBA vuông tại B có \(sinBAO=\dfrac{BO}{OA}=\dfrac{1}{2}\)
nên \(\widehat{BAO}=30^0\)
Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC và AO là phân giác của góc BAC
AO là phân giác của góc BAC
=>\(\widehat{BAC}=2\cdot\widehat{BAO}=60^0\)
Xét ΔBAC có BA=AC và \(\widehat{BAC}=60^0\)
nên ΔBAC đều
=>\(BC=AB=R\sqrt{3}\)
a: Xét (O) có
MA,MB là các tiếp tuyến
Do đó:MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1),(2) suy ra MO là đường trung trực của AB
=>MO\(\perp\)AB tại H và H là trung điểm của AB
Xét (O) có
ΔBAD nội tiếp
BD là đường kính
Do đó: ΔBAD vuông tại A
=>BA\(\perp\)AD
mà BA\(\perp\)OM
nên OM//AD
b: Bạn ghi lại đề đi bạn
Xét tứ giác BEHD có \(\widehat{BEH}+\widehat{BDH}=90^0+90^0=180^0\)
nên BEHD là tứ giác nội tiếp
Xét tứ giác DHFC có \(\widehat{HDC}+\widehat{HFC}=90^0+90^0=180^0\)
nên DHFC là tứ giác nội tiếp
Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0\)
nên AEHF là tứ giác nội tiếp
Xét tứ giác BEFC có \(\widehat{BEC}=\widehat{BFC}=90^0\)
nên BEFC là tứ giác nội tiếp
a: Xét (O) có
ΔBAC nội tiếp
BC là đường kính
Do đó: ΔBAC vuông tại A
Xét tứ giác AIHK có \(\widehat{AIH}=\widehat{AKH}=\widehat{KAI}=90^0\)
nên AIHK là hình chữ nhật
Kẻ Ax là tiếp tuyến của (O) tại A
=>OA\(\perp\)Ax tại A
Xét ΔAHC vuông tại H có HK là đường cao
nên \(AK\cdot AC=AH^2\left(1\right)\)
Xét ΔAHB vuông tại H có HI là đường cao
nên \(AI\cdot AB=AH^2\left(2\right)\)
Từ (1),(2) suy ra \(AI\cdot AB=AK\cdot AC\)
=>\(\dfrac{AI}{AC}=\dfrac{AK}{AB}\)
Xét ΔAIK và ΔACB có
\(\dfrac{AI}{AC}=\dfrac{AK}{AB}\)
\(\widehat{IAK}\) chung
Do đó: ΔAIK~ΔACB
=>\(\widehat{AKI}=\widehat{ABC}\)
Xét (O) có
\(\widehat{xAC}\) là góc tạo bởi tiếp tuyến Ax và dây cung AC
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{xAC}=\widehat{ABC}\)
=>\(\widehat{xAC}=\widehat{AKI}\)
mà hai góc này là hai góc ở vị trí so le trong
nên IK//Ax
=>OA\(\perp\)IK
b: ΔOMN cân tại O
mà OA là đường cao
nên OA là đường trung trực của MN
=>AM=AN
=>\(\widehat{AMN}=\widehat{ANM}\)
=>\(sđ\stackrel\frown{AM}=sđ\stackrel\frown{AN}\)
Xét (O) có
\(\widehat{AMN}\) là góc nội tiếp chắn cung AN
\(\widehat{ABM}\) là góc nội tiếp chắn cung AM
\(sđ\stackrel\frown{AM}=sđ\stackrel\frown{AN}\)
Do đó: \(\widehat{AMN}=\widehat{ABM}\)
Xét ΔAMI và ΔABM có
\(\widehat{AMI}=\widehat{ABM}\)
\(\widehat{MAI}\) chung
Do đó: ΔAMI~ΔABM
=>\(\dfrac{AM}{AB}=\dfrac{AI}{AM}\)
=>\(AM^2=AI\cdot AB\)
=>AM=AH
=>ΔAMH cân tạiA
a.
Ở mặt nước (đô sâu 0 feet) áp suất là 1atm nên:
\(P\left(0\right)=1\Leftrightarrow0.a+b=1\Rightarrow b=1\)
Ở độ sâu 32 feet áp suất là 2atm nên:
\(P\left(32\right)=2\Rightarrow32a+b=2\)
\(\Rightarrow a=\dfrac{2-b}{32}=\dfrac{1}{32}\)
Vậy \(P\left(d\right)=\dfrac{1}{32}d+1\)
b.
Độ sâu d có áp suất 2,25 atm thỏa mãn:
\(\dfrac{1}{32}d+1=2,25\)
\(\Rightarrow d=40\) (feet)\(=12,192\left(m\right)\)
a) Ta có:
\(\Delta=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-4m\right)\)
\(=4m^2-8m+4+16m\)
\(=4m^2+8m+4=4\left(m+1\right)^2\ge0\forall m\)
Nên pt luôn có nghiệm
b) Để pt có nghiệm kép thì:
\(\Delta=0\Leftrightarrow4\left(m+1\right)^2=0\Leftrightarrow m+1=0\Leftrightarrow m=-1\)
a: Gọi O là trung điểm của CM
Xét (O) có
ΔDCM nội tiếp
MC là đường kính
Do đó: ΔDCM vuông tại D
=>BD\(\perp\)DC tại D
Xét tứ giác ABCD có \(\widehat{CAB}=\widehat{CDB}=90^0\)
nên ABCD là tứ giác nội tiếp
b: Xét ΔMAB vuông tại A và ΔMDC vuông tại D có
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
Do đó: ΔMAB~ΔMDC
=>\(\dfrac{AB}{DC}=\dfrac{MA}{MD}\)
=>\(AB\cdot MD=AM\cdot DC\)