K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Diện tích mảnh đất là:

12,5x7=87,5(m2)

6 tháng 5 2024

ư f34

Độ dài đáy nhỏ là 24,8x0,5=12,4(m)

Chiều cao là 12,4+12,5=24,9(m)

Diện tích mảnh đất hình thang là:

\(\left(12,4+24,8\right)\times\dfrac{24.9}{2}=463,14\left(m^2\right)\)

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>HB=HC

b: ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HB=\sqrt{15^2-9^2}=12\left(cm\right)\)

\(BC=2\cdot BH=2\cdot12=24\left(cm\right)\)

c: Xét ΔABC có

H là trung điểm của BC

HM//AB

Do đó: M là trung điểm của AC

Xét ΔABC có

CI,AH là các đường trung tuyến

CI cắt AH tại G

Do đó: G là trọng tâm của ΔABC

Xét ΔABC có

G là trọng tâm

M là trung điểm của AC

Do đó: B,G,M thẳng hàng

Gọi độ dài quãng đường AB là x(km)

(Điều kiện: x>0)

Độ dài quãng đường lúc về là x+10(km)

Thời gian đi là \(\dfrac{x}{45}\left(giờ\right)\)

Thời gian về là \(\dfrac{x+10}{50}\left(giờ\right)\)

Thời gian về ít hơn thời gian đi 30p=0,5 giờ nên ta có:

\(\dfrac{x}{45}-\dfrac{x+10}{50}=0,5\)

=>\(\dfrac{10x-9\left(x+10\right)}{450}=0,5\)

=>10x-9x-90=225

=>x-90=225

=>x=315(nhận)

vậy: Độ dài quãng đường AB là 315km

NV
6 tháng 5 2024

Tam giác chỉ có 2 đỉnh A và B thì ko thể xác định được các trung tuyến, nên đề bài thiếu dữ liệu

6 tháng 5 2024

79.764

6 tháng 5 2024

79.764

\(\dfrac{2}{3}+\dfrac{1}{3}\cdot\left(-\dfrac{2}{3}+\dfrac{5}{6}\right):\dfrac{2}{3}\)

\(=\dfrac{2}{3}+\dfrac{1}{3}\cdot\dfrac{1}{6}:\dfrac{2}{3}\)

\(=\dfrac{2}{3}+\dfrac{1}{18}\cdot\dfrac{3}{2}\)

\(=\dfrac{2}{3}+\dfrac{1}{12}=\dfrac{9}{12}=\dfrac{3}{4}\)

6 tháng 5 2024

3 phần 4

 

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{BAH}\) chung

Do đó: ΔAHB=ΔAKC

=>AH=AK

=>ΔAHK cân tại A

b: Xét ΔKBC vuông tại K và ΔHCB vuông tại H có

BC chung

KC=HB(ΔAHB=ΔAKC)

Do đó: ΔKBC=ΔHCB

=>\(\widehat{KCB}=\widehat{HBC}\)

=>\(\widehat{IBC}=\widehat{ICB}\)

=>ΔIBC cân tại I

Xét ΔACB có

BH,CK là các đường cao

BH cắt CK tại I

Do đó: I là trực tâm của ΔACB

=>AI\(\perp\)BC tại M

TA có: ΔIBC cân tại I

mà IM là đường cao

nên IM là phân giác của góc BIC

c: Sửa đề: Chứng minh HK//BC

Xét ΔABC có

\(\dfrac{AK}{AB}=\dfrac{AH}{AC}\)

nên KH//BC

a: Xét ΔBAE vuông tạiA và ΔBHE vuông tại H có

BE chung

\(\widehat{ABE}=\widehat{HBE}\)

Do đó: ΔBAE=ΔBHE

b: ΔBAE=ΔBHE

=>BA=BH và EA=EH

Ta có: BA=BH

=>B nằm trên đường trung trực của AH(1)

Ta có: EA=EH

=>E nằm trên đường trung trực của AH(2)

Từ (1),(2) suy ra BE là đường trung trực của AH

c: Ta có: \(\widehat{CAH}+\widehat{BAH}=90^0\)

\(\widehat{HAD}+\widehat{BHA}=90^0\)(ΔADH vuông tại D)

mà \(\widehat{BAH}=\widehat{BHA}\)(ΔBAH cân tại B)

nên \(\widehat{CAH}=\widehat{DAH}\)

=>AH là phân giác của góc DAC