Cho a,b,c là độ dài 3 cạnh của 1 tam giác
CMR \(\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}< \sqrt{3}\left(a+b+c\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do D, E đối xứng qua AB nên tam giác EKD cân tại K.
Do EDFG là hình bình hành nên \(\widehat{KED}=180^o-\widehat{EDF}=180^o-\left(180^o-30^o-30^o\right)=60^o\)
Vậy KDE là tam giác đều.
b) Câu này phải ta KDFG mới là hình thang cân.
Ta có KDFG đã là hình thang.
Lại có \(\widehat{GFD}=\widehat{KED}\) ( Hai góc đối của hình bình hành)
và \(\widehat{KED}=\widehat{EKD}\) (tam giác KDE đều) và \(\widehat{EKD}=\widehat{KDF}\) (so le trong)
Vậy nên \(\widehat{GFD}=\widehat{KDF}\)
Vậy KDFG là hình thang cân (Hai góc kề một đáy bằng nhau)
c) Gọi I, J là giao điểm của DF và KG với AC.
Ta có ngay I là trung điểm DF nên J cũng là trung điểm KG.
Từ đó ta có \(\Delta AJK=\Delta AJG\) (Hai cạnh góc vuông)
\(\Rightarrow\widehat{GAC}=\widehat{KAJ}=60^o=\widehat{ACB}\)
Vậy AG // BC.
a)xét hình tứ giác APBC' có AM=BM
CM=MP
-> dpcm
chúng minh tương tự với cacshinhf còn lại nhé
còn phần b mình chịu
a) Ta có: \(\Delta\)AMP=\(\Delta\)BMC' (c.g.c) => ^MAP=^MBC' (2 góc tương ứng)
2 góc trên So le trong nên AP//BC' và AP=BC' (2 cạnh tương ứng)
Xét tứ giác APBC': AP//BC' và AP=BC' => AC'=BP => APBC' là hình bình hành.
Bạn cũng chứng minh tương tự với các tứ giác BPCA' và CPAB'.
b) Gọi giao điểm của CC' và AA' là K.
Ta có: AC'=BP (câu a) mà BP=CA' => AC'=CA' .
Mặt khác: AC'//BP và BP//CA' (câu a) => AC'//CA'
=> \(\Delta\)AKC'=\(\Delta\)A'KC (g.c.g) => AK=A'K và C'K=CK (2 cạnh tương ứng)
Giống như vậy: AB'=PC=A'B và chứng minh được AB'//A'B
=> \(\Delta\)AB'K=A'BK (c.g.c) => ^AKB'=^A'KB (2 góc tương ứng) mà A;K và A' thẳng hàng
=> 3 điểm B;K;B' thẳng hàng và có thể suy ra KB=KB' (2 cạnh tương ứng)
Xét hình AC'BA'CB': Có K là giao điểm của các đường AA'; BB' và CC' (cmt)
Lại có: AK=A'K; C'K=CK và KB=KB' (đã c/m) => Hình AC'BA'CB' có 1 tâm đối xứng.
Bài 1
Làm theo các bước sau:
Bước 1: Người 1 bốc 2003 viên sỏi.
Như vậy còn lại 8 viên sỏi trên bàn.
Bước 2:
Trường Hợp 1: Nếu người 2 bốc số sỏi trong các số 1, 3, 5, 7 thì bốc nốt số sỏi còn lại thì người 1 thắng.
Trường Hợp 2: Nếu người 2 bốc 2 viên sỏi thì còn lại 6 viên. Người 1 bốc tiếp 2 viên thì sẽ còn lại 4 viên. Sau lượt bốc của người 2, người 1 có thể bốc nốt số sỏi còn lại.
Làm theo cách đó, người 1 luôn thắng
B1: Người 1 bốc 2003 viên sỏi.
Như vậy còn lại 8 viên sỏi trên bàn.
B2:
TH1: Nếu người 2 bốc số sỏi trong các số 1, 3, 5, 7 thì bốc nốt số sỏi còn lại thì người 1 thắng.
TH2: Nếu người 2 bốc 2 viên sỏi thì còn lại 6 viên. Người 1 bốc tiếp 2 viên thì sẽ còn lại 4 viên. Sau lượt bốc của người 2, người 1 có thể bốc nốt số sỏi còn lại.
Đặt đa thức là M
\(\Rightarrow M=n^2\left(n^6-n^4-n^2+1\right)\)
\(\Rightarrow M=n^2\left[n^4\left(n^2-1\right)-\left(n^2-1\right)\right]\)
\(\Rightarrow M=n^2\left(n^2-1\right)\left(n^4-1\right)\)
\(\Rightarrow M=n\left(n-1\right)\left(n+1\right)n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\left(n-1\right)\left(n+1\right)\)
Ta có
n(n - 1)(n+1) là tích 3 số tự nhiên liên tiếp nên chia hết cho 3
\(\Rightarrow\left[n\left(n-1\right)\left(n+1\right)\right]\left[n\left(n-1\right)\left(n+1\right)\right]\) chia hết cho 9
=> M chia hết cho 9
Mặt khác
Vì n là số lẻ nên n - 1 và n+1 là số chẵn
=> (n - 1)(n+1) chia hết cho 8
\(n\left(n-1\right)\left(n+1\right)n\left(n-1\right)\left(n+1\right)\left(n+1\right)\left(n-1\right)\) chia hết cho 128
=> M chia hết cho 128
Mà (9;128)=1
=> M chia hết cho 9x128=1152 ( đpcm )
Với n = 0 thì đúng.
Dễ thấy khi \(x^a+\frac{1}{x^a}=x^{-a}+\frac{1}{x^{-a}}\)nên ta chỉ cần chứng minh nó đúng với n \(\in\)Z+
Với n = 2 thì \(\Rightarrow x^2+\frac{1}{x^2}+2=\left(x+\frac{1}{x}\right)^2\)là số nguyên
\(\Rightarrow x^2+\frac{1}{x^2}\)là số nguyên.
Giả sử nó đúng đến n = k
\(\Rightarrow\hept{\begin{cases}\frac{1}{x^{k-1}}+x^{k-1}\\x^k+\frac{1}{x^k}\end{cases}}\)đều là số nguyên.
Ta chứng minh với n = k + 1 thì
xk+1 + \(\frac{1}{x^{k+1}}\)cũng là số nguyên
Ta có:
\(\left(x+\frac{1}{x}\right)\left(x^k+\frac{1}{x^k}\right)=x^{k+1}+\frac{1}{x^{k+1}}+x^{k-1}+\frac{1}{x^{k-1}}\)
\(\Rightarrow x^{k+1}+\frac{1}{x^{k+1}}\)là số nguyên.
Vậy ta có điều phải chứng minh là đúng.
Gọi O là giao điểm của AM và IK
Vì tam giác ABC vuông tại A và có đường trung tuyến AM nên ta có AM = BM = CM = 1/2BC
=> Tam giác ABM cân tại M =>\(\widehat{MAB}=\widehat{MBA}\)
Dễ thấy AIHK là hình chữ nhật vì \(\widehat{BAC}=\widehat{AKH}=\widehat{AIH}=90^o\)
=> \(\widehat{KIA}=\widehat{AHK}\) (tính chất hình chữ nhật)
Mà : \(\hept{\begin{cases}\widehat{AHK}+\widehat{AHI}=90^o\\\widehat{BHI}+\widehat{AHI}=90^o\end{cases}}\) => \(\widehat{AHK}=\widehat{BHI}\) hay \(\widehat{KIA}=\widehat{BHI}\)
Ta có : \(\widehat{BHI}+\widehat{ABC}=90^o\) mà \(\widehat{BHI}=\widehat{KIA};\widehat{MAB}=\widehat{ABC}\)
=> \(\widehat{KIA}+\widehat{MAB}=90^o\) mà trong tam giác AOI : \(\widehat{KIA}+\widehat{MAB}+\widehat{AOI}=180^o\)
=> \(\widehat{AOI}=90^o\Rightarrow AM\perp IK\) (đpcm)
Gọi O là giao điểm của AM và IK.
Tứ giác AIHK có 3 góc vuông nên AIHK là hình chữ nhật nên góc HKI = góc AIK.
góc HKI phụ góc IKA mà góc IKA = góc HAK suy ra góc HKI phụ góc HAK.
Do đó góc HKI = góc C (cùng phụ góc HAK). Suy ra góc AIK = góc C. (1)
Dễ dàng chứng minh được góc B = góc MAB nên MAB phụ góc C. (2)
Từ (1) và (2) suy ra góc AIK phụ góc MAB hay góc IOA = 900.
Vậy AM vuông góc với IK.
Từ gt,ta có :\(\frac{A}{B-C}=-\left(\frac{B}{C-A}+\frac{C}{A-B}\right)=\frac{AB-B^2-AC+C^2}{\left(A-C\right)\left(A-B\right)}\Rightarrow\frac{A}{\left(B-C\right)^2}=\frac{AB-B^2-AC+C^2}{\left(A-C\right)\left(A-B\right)\left(B-C\right)}\left(1\right)\)
Tương tự,ta có :\(\frac{B}{\left(C-A\right)^2}=\frac{CB-AB-C^2+A^2}{\left(A-C\right)\left(A-B\right)\left(B-C\right)}\left(2\right);\frac{C}{\left(A-B\right)^2}=\frac{CA-CB-A^2+B^2}{\left(A-C\right)\left(A-B\right)\left(B-C\right)}\left(3\right)\)
Cộng các vế (1),(2),(3) ta có biểu thức cần tính bằng 0.
07/01/2017 lúc 19:12
CHO A,B,C ĐÔI MỘT KHÁC NHAU VÀ AB−C +BC−A +CA−B =0
TÍNH GIÁ TRỊ CỦA A(B−C)2 +B(C−A)2 +C(A−B)2
Được cập nhật {timing(2017-08-24 22:13:15)}
Toán lớp 8
Phan Thanh Tịnh 07/01/2017 lúc 23:29
Thống kê hỏi đáp
Báo cáo sai phạm
Từ gt,ta có :AB−C =−(BC−A +CA−B )=AB−B2−AC+C2(A−C)(A−B) ⇒A(B−C)2 =AB−B2−AC+C2(A−C)(A−B)(B−C) (1)
Tương tự,ta có :B(C−A)2 =CB−AB−C2+A2(A−C)(A−B)(B−C) (2);C(A−B)2 =CA−CB−A2+B2(A−C)(A−B)(B−C) (3)
Cộng các vế (1),(2),(3) ta có biểu thức cần tính bằng 0.
Đúng 18 Hoàng Nguyễn Quỳnh Khanh đã chọn câu trả lời này.
Áp dụng định lý Pi-ta-go đó
\(a,b,c\) là 3 cạnh của tam giác nên \(a,b,c>0\).
Chứng minh bất đẳng thức phụ
Giả sử: \(\sqrt{2\left(a^2+b^2\right)}\ge a+b\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow a^2+b^2\ge2ab\) ( luôn đúng)
Giả sử: \(\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)
\(\Leftrightarrow2\left(a+b+c\right)\le\sqrt{2\left(a^2+b^2\right)}+\sqrt{2\left(b^2+c^2\right)}+\sqrt{2\left(a^2+c^2\right)}\)
Ta có: \(\sqrt{2\left(a^2+b^2\right)}+\sqrt{2\left(b^2+c^2\right)}+\sqrt{2\left(a^2+c^2\right)}\ge a+b+b+c+a+c\)
\(\Rightarrow\sqrt{2\left(a^2+b^2\right)}+\sqrt{2\left(b^2+c^2\right)}+\sqrt{2\left(a^2+c^2\right)}\ge2\left(a+b+c\right)\)
Vậy: \(\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\).
Ta chứng minh: \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}< \sqrt{3}\left(a+b+c\right)\)
Áp dụng bất đẳng thức Bu - nhi - a ta có:
\(\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{a^2+c^2}\right)^2\le\left(1+1+1\right)\left(a^2+b^2+b^2+c^2+a^2+c^2\right)\)
\(=6\left(a^2+b^2+c^2\right)\)
Ta cần chứng minh: \(6\left(a^2+b^2+c^2\right)< \left(\sqrt{3}\left(a+b+c\right)\right)^2\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)< \left(a+b+c\right)^2\)
\(\Leftrightarrow a^2+b^2+c^2< 2ab+2bc+2ac\)
\(\Leftrightarrow\left(a-b\right)^2+c^2< 2bc+2ac\)(1)
Do \(a,b,c\)là 3 cạnh của tam giác suy ra \(a-b< c\)
Gải sử \(a>b\) suy ra \(\left(a-b\right)^2< c^2\)
Thay vào (1 ) ta có \(c^2+c^2< 2bc+2ac\)
\(\Leftrightarrow2c^2< 2c\left(a+b\right)\)
\(\Leftrightarrow c< a+b\)( Đúng với a, b, c là 3 cạnh của tam giác)
Vậy BĐT đã được chứng minh.