Cho đa thức \(f\left(x\right)=ax^2+bx+c\), biết \(29a+2c=3b.\)
Chứng minh rằng: \(f\left(2\right).f\left(-5\right)< =0_{_{ }}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\widehat{BAH}=180^0-\widehat{HBA}-\widehat{BHA}=180^0-90^0-45^0=45^0\)
Do \(BD\) là tia phân giác \(\widehat{ABC}\)nên \(\widehat{ABD}=45^0:2=22,5^0\)
Mặt khác:\(\widehat{BDA}=45^0\Rightarrow\widehat{BAC}=180^0-\widehat{ABD}-\widehat{BDA}=180^0-45^0-22,5^0\Rightarrow\widehat{BAC}=112,5^0\)
\(\Rightarrow\widehat{HAC}=\widehat{BAC}-\widehat{BAH}=112,5^0-45^0=67,5^0\left(1\right)\)
Gọi Ax là tia đối của tia AB.
Ta có:\(\widehat{CAx}=180^0-\widehat{HAC}-\widehat{BAH}=180^0-67,5^0-45^0=67,5^0\left(2\right)\)
Từ (1);(2) suy ra AC là tia phân giác \(\widehat{HAx}\) hay AC là tia phân giác ngoài tại đỉnh A của tam giác ABH.
Xét \(\Delta\)ABH có:AD là tia phân giác ngoài cắt tia phân giác trong BD tại D nên HD là tia phân giác ngoài tại H.
\(\Rightarrow\widehat{DHC}=90^0:2=45^0\Rightarrow\widehat{DHC}=\widehat{ABC}=45^0\)
\(\Rightarrow AB//HD\)(có cặp góc đồng vị bằng nhau)
P/S:Thưa cô.Sao lại đưa câu hỏi này vào chuyên mục Toán Hay ah=))
*Lưu ý : hình ảnh chỉ mang tính chất minh họa.
Đây chỉ là "dàn ý" thôi nhé ! Khi làm bạn cần trình bày đầy đủ vào bài làm.
a) BD là phân giác => \(\widehat{ABD}\)= \(\widehat{DBH}\)= \(\frac{45^o}{2}\)= 22,5o
\(\widehat{BIH}\)= \(\widehat{DIA}\)= 90o - 22,5o = 67,5o
\(\widehat{BDA}\)= 45o (gt)
=> \(\widehat{HAC}\)= 180o - 45o - 67,5o = 67,5o (1)
Gọi AK là phân giác góc A trong tam giác ABH.
=> \(\widehat{BAK}\)= \(\widehat{KAH}\)= 22,5o (2)
Từ (1) và (2) => \(\widehat{KAC}\)= 90o
=> đpcm
b) ?
a) A=(n^2-n+1)^2-1=> A không thể chính phuong
=> đề có thể là: \(A=n^4-2n^3+3n^2-2n+1\) Hoặc chứng minh A không phải số phương
b)
23^5 tận cùng 3
23^12 tận cùng 1
23^2003 tận cùng 7
=>B Tận cùng là 1 => B là số lẻ
23^5 chia 8 dư 7
23^12 chia 8 dư 1
23^2003 chia 8 dư 7
(7+1+7=15)
=> B chia 8 dư 7
Theo T/c số một số cp một số chính phương lẻ chỉ có dạng 8k+1=> B không phải số Cp
\(555\equiv-1\left(\text{mod 4}\right)\Rightarrow555^{777}\equiv\left(-1\right)^{777}\left(\text{mod 4}\right)\equiv\left(-1\right)\left(\text{mod 4}\right)\)
\(\Rightarrow\text{555^777 chia 4 dư 3. }\)
\(555^{333}\equiv\left(-1\right)^{333}\left(\text{mod 4}\right)\equiv\left(-1\right)\left(\text{mod 4}\right)\)
\(\Rightarrow\text{555^333 chia 4 dư 3}\)
\(\text{Đến đây dễ rồi -__-}\)
Ta có:
5552≡5 (mod 10)
5553≡5( mod 10)
5555=5552.5553≡5.5≡5(mod 10)
---> 555777≡5(mod 10)
Suy ra:
333555777đồng dư với 3335
Do 3335=3332.3333≡3(mod 10)
Vậy chữ số tận cùng của 333555777là 3 (1)
Làm tương tự với 777555333có chữ số tận cùng là 7 (2)
Từ (1) và (2) suy ra 333555777+777555333có chữ số tận cùng là 0
Vậy 333555777+777555333chia hết cho 10 (đpcm)
\(S=\left(\frac{1}{2^2}+\frac{1}{2^6}+...+\frac{1}{2^{4n-2}}+..+\frac{1}{2^{2002}}\right)-\left(\frac{1}{2^4}+\frac{1}{2^8}+..+\frac{1}{2^{4n}}+...+\frac{1}{2^{2004}}\right)\)= A - B
Tính A:
\(2^4.A=2^2+\frac{1}{2^2}+\frac{1}{2^6}+...+\frac{1}{2^{4n-2}}+...+\frac{1}{2^{1998}}\)
=> 24.A - A = 15.A =
\(\left(2^2+\frac{1}{2^2}+\frac{1}{2^6}+...+\frac{1}{2^{4n-2}}+...+\frac{1}{2^{1998}}\right)\)- \(\left(\frac{1}{2^2}+\frac{1}{2^6}+...+\frac{1}{2^{4n-2}}+...+\frac{1}{2^{2002}}\right)\)
= 22 - \(\frac{1}{2^{2002}}\) => A = \(\frac{2^2}{15}-\frac{1}{15.2^{2002}}
Đề bài không đầy đủ:
ABC có thẳng hàng không?
Nếu thẳng hàng thì C nằm giữa hay A nằm giữa
Một đề kiểu ko đầy đủ thế này thì giải kiểu gì.......................?????????????????????????????
Vì 5 CM là 3/5 - 1/3 =4/15 nên khoảng cách giữa A và B la : 5 / 4/15 =5 / 4 * 15 = 18,75 (CM) Đáp Số : 18,75 CM
Với ý tưởng đưa về dạng: \(y=\frac{f\left(x\right)}{g\left(x\right)}\),ta làm như sau:
Từ đề bài suy ra\(x^2-4x+5=xy-y\)
\(\Rightarrow x^2-4x+5=y\left(x-1\right)\)
Với x = 1 thì \(y=0;x^2-4x+5=2\)(loại)
Xét x khác 1.Chia hai vế cho x- 1:
\(y=\frac{x^2-4x+5}{x-1}=\frac{\left(x-1\right)^2}{x-1}-\frac{2x-4}{x-1}\)
\(=x-1-\frac{2\left(x-2\right)}{x-1}=x-1-\left[\frac{2\left(x-1\right)}{x-1}-\frac{2}{x-1}\right]\)\(=x-3+\frac{2}{x-1}\)
Để y nguyên thì x - 1 nguyên.Suy ra \(x-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Tới đây tính x.Thay ngược lại biểu thức tính y.Mọi việc quá đơn giản :D
\(x^2+y+5=4x+xy\\ \Leftrightarrow x^2-xy+y-4x+5=0\)
\(\Leftrightarrow-x\left(y-4x\right)+y-4x+5x^2-5+10=0\\ \Leftrightarrow\left(y-4x\right)\left(1-x\right)-5\left(1-x^2\right)=-10\)
\(\Leftrightarrow\left(y-4x\right)\left(1-x\right)-5\left(1-x\right)\left(1+x\right)=-10\\ \Leftrightarrow\left(1-x\right)\left(y-4x-5-5x\right)=-10\)
\(\Leftrightarrow\left(1-x\right)\left(y-5-9x\right)=-10\)
Vì x,y thuộc Z nên -10 = -1.10 = 10.-1 = 1.-10 = -10.1 = 2.-5 = -5.2 = -2.5 = 5.-2
Ta lập bảng để xét lần lượt các cặp của x,y rồi thử lại
Chúc bạn học tốt ^^
Ta có: \(\Delta ABM\)
=> AB + BM > AD ( BĐT tam giác) (1)
Ta có :\(\Delta AMC\)
=> AC + CM > AD ( BĐT tam giác) (2)
Từ 1;2 => AB + BM + AC + CM > 2AD
=> AB + AC +BC > 2AD
=> \(AB + AC + BC \over 2 \)> AD (*)
Ta có: \(\Delta ABM\)
=> AB - BM < AD ( hệ quả BĐT tam giác) (3)
Ta có :\(\Delta AMC\)
=> AC - CM < AD ( hệ quả BĐT tam giác) (4)
Từ 3;4 => AB - BM + AC - CM < 2AD
=> AB + AC - BC < 2AD
=> \(AB + AC - BC \over 2 \)< AD (**)
Từ *;** => \(AB + AC - BC \over 2\) < AD < \(AB + AC + BC \over 2 \)
xét tam giác ABM có:
AB+BM>AD (1)
xét tam giác AMB có:
AC+CM>AD (2)
từ (1) và (2) ta có: AB+BM+AC+CM>2AD
=>AB+AC+BC=2AD
\(\Rightarrow\frac{AB+AC+BC}{2}>AD.\)
chứng minh gần tương tự ta được \(\frac{AB+AC-BC}{2}< AD.\)
suy ra đpcm
Gọi O là giao điểm của CM và AD; I là giao điểm của CN và BE.
Do AD là tia phân giác góc A nên ta thấy ngay \(\Delta ACD=\Delta AMD\) (Cạnh huyền góc nhọn)
Vậy thì AC = AM; DC = DM hay AD là trung trực của CM. Vậy nên \(\widehat{COD}=90^o.\)
Từ đó ta có \(\widehat{OCD}+\widehat{CDO}=90^o\) mà \(\widehat{CAD}+\widehat{CDO}=90^o\Rightarrow\widehat{OCD}=\widehat{CAD}=\frac{\widehat{CAB}}{2}\)
Hoàn toàn tương tự \(\widehat{ACN}=\frac{\widehat{ABC}}{2}\)
Ta có \(\widehat{ABC}+\widehat{BAC}=90^o\Rightarrow2\widehat{ACN}+2\widehat{BCM}=90^o\)
\(\Rightarrow\widehat{ACN}+\widehat{BCM}=45^o\Rightarrow\widehat{MCN}=90^o-45^o=45^o.\)
Bạn thêm điều kiện m,n là số tự nhiên nhé!
Giải như sau :
Với n là số tự nhiên thì ta luôn có 2n là số chẵn.
Xét trong giả thiết thì các hạng tử có số mũ chẵn.
Vậy thì ta có : \(\left(x_1p-y_1q\right)^{2n}+\left(x_2p-y_2q\right)^{2n}+...+\left(x_mp-y_mq\right)^{2n}\ge0\)
Kết hợp với giả thiết bài toán ta được \(\left(x_1p-y_1q\right)^{2n}+\left(x_2p-y_2q\right)^{2n}+...+\left(x_mp-y_mq\right)^{2n}=0\)
\(\Leftrightarrow x_ip-y_iq=0\) (i = 1,2,...,m)
\(\Leftrightarrow x_ip=y_iq\Leftrightarrow\frac{x_i}{y_i}=\frac{q}{p}\)
Ta thay i = 1,2,...,m thì được : \(\frac{q}{p}=\frac{x_1}{y_1}=\frac{x_2}{y_2}=...=\frac{x_m}{y_m}=\frac{x_1+x_2+...+x_m}{y_1+y_2+...+y_m}\) (áp dụng tính chất dãy tỉ sô bằng nhau)
hay : \(\frac{x_1+x_2+...+x_m}{y_1+y_2+...+y_m}=\frac{q}{p}\) (đpcm)
kho qua chi k cho em di em se lam duoc
Vì \(29a+2c=3b\) => \(c=\frac{3b-29a}{2}\)
Ta có: \(f\left(2\right).f\left(-5\right)=\left[a.2^2+b.2+c\right]\left[a\left(-5\right)^2+b.\left(-5\right)+c\right]\)
\(=\left(4a+2b+c\right)\left(25a-5b+c\right)\)
\(=\left(4a+2b+\frac{3b-29a}{2}\right)\left(25a-5b+\frac{3b-29a}{2}\right)\)
\(=\left(\frac{8a+4b+3b-29a}{2}\right)\left(\frac{50a-10b+3b-29a}{2}\right)\)
\(=\left(\frac{-21a+7b}{2}\right)\left(\frac{21a-7b}{2}\right)\)
\(=\frac{-7}{2}\left(3a-b\right).\frac{7}{2}\left(3a-b\right)\)
\(=\frac{-49}{4}\left(3a-b\right)^2\le0\) (ĐFCM)