K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2018

Ta có \(x^4+x^2+1=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)

Số dư của phép chia đa thức f(x) cho x4 + x2 + 1 là đa thức có bậc thấp hơn, tức là \(ax^3+bx^2+cx+d\)

Ta có \(f\left(x\right)=\left(x^4+x^2+1\right)g\left(x\right)+ax^3+bx^2+cx+d\)

\(=\left(x^2+x+1\right)\left(x^2-x+1\right)g\left(x\right)+\left(x^2+x+1\right)\left(ax+b-a\right)+\left(c-b\right)x+d+a-b\)

\(=\left(x^2+x+1\right)\left[\left(x^2-x+1\right)g\left(x\right)+ax+b-a\right]+\left(c-b\right)x+d+a-b\)

Vậy nên \(\hept{\begin{cases}c-b=-1\\d+a-b=1\end{cases}}\)

Ta cũng có:

\(f\left(x\right)=\left(x^4+x^2+1\right)g\left(x\right)+ax^3+bx^2+cx+d\)

\(=\left(x^2-x+1\right)\left(x^2+x+1\right)g\left(x\right)+\left(x^2-x+1\right)\left(ax+b+a\right)+\left(c+b\right)x+d-a-b\)

Vậy nên \(\hept{\begin{cases}c+b=3\\d-a-b=5\end{cases}}\)

Từ (1) và (2) ta có: \(\hept{\begin{cases}c-b=-1\\c+b=3\end{cases}}\)  và \(\hept{\begin{cases}d-b+a=1\\d-b-a=5\end{cases}}\)

Vậy nên \(\hept{\begin{cases}c=1\\b=2\end{cases}}\) và \(\hept{\begin{cases}d-b=3\\a=-2\end{cases}\Rightarrow\hept{\begin{cases}d=5\\a=-2\end{cases}}}\)

Vậy thì đa thức dư cần tìm là -2x3 + 2x2 + x + 5

22 tháng 7 2018

Phần (c-b)x sai phải là (c-b+a-ax)x

DM
30 tháng 1 2018

Kết luận:   GTNN của P là 3/4; P không có GTLN.

Giải: P là một giá trị của hàm số đã cho khi và chỉ khi tồn tại x để   \(P=\frac{x^2+x+1}{x^2+2x+1}\) (1), tức là phương trình (1) ẩn x phải có nghiệm.

Ta có  \(\left(1\right)\Leftrightarrow P\left(x^2+2x+1\right)=x^2+x+1\)\(\Leftrightarrow\left(P-1\right)x^2+\left(2P-1\right)x+\left(P-1\right)=0\).

Nếu \(P=1\) thì (1) trở thành  \(x=0\), phương trình có nghiệm x = 0.

Nếu \(P\ne1\) thì phương trình sẽ có nghiệm khi và chỉ khi  

                                  \(\Delta=\left(2P-1\right)^2-4\left(P-1\right)^2=4P-3\ge0\Leftrightarrow P\ge\frac{3}{4}\)

Vậy tập giá trị của P là   \(\frac{3}{4}\le P< +\infty\). Do đó P không có GTLN và P có GTNN = \(\frac{3}{4}\)

26 tháng 7 2017

\(P=\frac{x^2+x+1}{x^2+2x+1}=\frac{\frac{3}{4}\left(x^2+2x+1\right)+\frac{\left(x^2-2x+1\right)}{4}}{x^2+2x+1}\)

\(=\frac{3}{4}+\frac{\left(x-1\right)^2}{4\left(x+1\right)^2}\ge\frac{3}{4}\)

Dấu = xảy ra  khi \(x=1\)

14 tháng 10 2019

Chia hình chữ nhật 4 x 3 thành 24 hình chữ nhật \(\frac{1}{2}\times1\).

Diện tích mỗi hình chữ nhật \(\frac{1}{2}\times1\) là \(\frac{1}{2}\left(cm^2\right)\)

G/s : Mỗi  hình chữ nhật  chỉ chứa ít hơn 3 điểm 

Tổng số điểm của hình chữ nhật  3 x 4 thì sẽ < 2.24 = 48 điểm <49 điểm ( vô lí)

=> Theo nguyên lí Dirichlet sẽ tồn tại một hình chữ nhật \(\frac{1}{2}\times1\)  chứa ít nhất  3 điểm trong 49 điểm đã cho.

Tam giác có 3 đỉnh nằm trong hình chữ nhật \(\frac{1}{2}\times1\) nên diện tích < \(\frac{1}{2}\left(cm^2\right)\)

Vậy ....

13 tháng 10 2019

Sử dụng: 

\(A^3+B^3+C^3-3ABC=\left(A+B+C\right)\left(A^2+B^2+C^2-AB-BC-AC\right)\) (1)

Áp dụng vào bài:

\(\left(a-1\right)^3+\left(b-2\right)^3+\left(c-3\right)^3-3\left(a-1\right)\left(b-2\right)\left(c-3\right)\)

\(=\left(a-1+b-2+c-3\right)\)\(\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2\)

\(+\left(a-1\right)\left(b-2\right)+\left(a-1\right)\left(c-3\right)+\left(b-2\right)\left(c-3\right)\)]

<=> \(0-3\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)

( vì \(a-1+b-2+c-3=a+b+c-6=6-6=0\))

<=> \(\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)

<=>  a = 1 hoặc b = 2 hoặc c = 3.

Không mất tính tổng quát: g/s : a = 1

Khi đó: b + c =5

Ta có:  \(T=\left(b-2\right)^{2n+1}+\left(c-3\right)^{2n+1}\)

\(=\left(b-2+c-3\right).A\)

\(=\left(b+c-5\right).A\)

\(=0.A=0\)

Với \(A=\left(b-2\right)^{2n}-\left(b-2\right)^{2n-1}\left(c-3\right)+\left(b-2\right)^{2n-2}\left(c-3\right)^2-...+\left(c-3\right)^{2n}\)

Tương tự b = 2; c= 3 thì T = 0.

Vậy T = 0.

12 tháng 10 2019

Sửa đề: chứng minh:\(\frac{a^2}{\sqrt{12b^2+11bc+2c^2}}+\frac{b^2}{\sqrt{12c^2+11ca+2a^2}}+\frac{c^2}{\sqrt{12a^2+11ca+2b^2}}\ge\frac{3}{5}\)

Ta có: \(12b^2+11bc+2c^2=\frac{1}{4}\left(7b+3c\right)^2-\frac{1}{4}\left(b-c\right)^2\le\frac{1}{4}\left(7b+3c\right)^2\)

Do đó: \(\frac{a^2}{\sqrt{12b^2+11bc+2c^2}}\ge\frac{2a^2}{7b+3c}\).Tương tự hai BĐT còn lại rồi cộng theo vế thu được:

\(VT\ge\frac{2a^2}{7b+3c}+\frac{2b^2}{7c+3a}+\frac{2c^2}{7a+3b}\)

\(=2\left(\frac{a^2}{7b+3c}+\frac{b^2}{7c+3a}+\frac{c^2}{7a+3b}\right)\ge\frac{2\left(a+b+c\right)^2}{10\left(a+b+c\right)}=\frac{3}{5}\)(áp dụng BĐT Cauchy-Schwarz dạng Engel)

Ta có đpcm. Đẳng thức xảy ra khi a = b = c = 1

P/s: Is that true? Thấy đề nó là lạ nên sửa thôi chứ ko chắc rằng mình sửa đúng..

13 tháng 10 2019

@Cool Kid: Cách của mình"

Đầu tiên ta xét hiệu: \(12b^2+11bc+2c^2-x\left(b-c\right)^2\). Ta chọn x để biểu thức sau khi phân tích có dạng một số chính phương.

\(=\left(12-x\right)b^2+\left(11+2x\right)bc+\left(2-x\right)c^2\)

\(=\left(12-x\right)\left(b+\frac{\left(11+2x\right)c}{2\left(12-x\right)}\right)^2+\left(2-x\right)c^2-\frac{\left(11+2x\right)^2c^2}{4\left(12-x\right)}\)

\(=\left(12-x\right)\left(b+\frac{\left(11+2x\right)c}{2\left(12-x\right)}\right)^2+c^2\left[\left(2-x\right)-\frac{\left(11+2x\right)^2}{4\left(12-x\right)}\right]\)

Đến đây thì ý tưởng đã rõ, ta chọn x sao cho 12 - x > 0 và:

\(\left(2-x\right)-\frac{\left(11+2x\right)^2}{4\left(12-x\right)}=0\). Bấm máy tính ta suy ra \(x=-\frac{1}{4}\)

Từ đó có thể dễ dàng suy ra cách phân tích bên trên

7 tháng 10 2019

\(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)

Xét \(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

\(\Leftrightarrow a=b=c\)

\(\RightarrowĐPCM\)

7 tháng 10 2019

Đặt \(\left(b+c-a;c+a-b;a+b-c\right)\rightarrow\left(x,y,z\right)\)

\(\Rightarrow x+y+z=a+b+c\)

Ta có:\(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(\left(x+y\right)^3-3\left(x+y\right)z\left(x+y+z\right)+z^3-x^3-y^3-z^3\)

\(=x^3+3xy\left(x+y\right)+y^3-3\left(x+y\right)z\left(x+y+z\right)+z^3-x^3-y^3-z^3\)

\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)

\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

\(=3\cdot2a\cdot2b\cdot2c=24abc\)

9 tháng 10 2019

Xét: \(9M=\Sigma\frac{a^2+b^2+c^2}{4a^2+b^2+c^2}-\frac{3}{2}+\Sigma\frac{2\left(ab+bc+ca\right)}{4a^2+b^2+c^2}-3+\frac{9}{2}\)

\(=\Sigma\left(\frac{a^2+b^2+c^2}{4a^2+b^2+c^2}-\frac{1}{2}\right)+\Sigma\left(\frac{2\left(ab+bc+ca\right)}{4a^2+b^2+c^2}-1\right)+\frac{9}{2}\)

\(=\frac{1}{2}\Sigma\frac{b^2+c^2-2a^2}{\left(4a^2+b^2+c^2\right)}+\Sigma\frac{2ab+2bc+2ca-4a^2-b^2-c^2}{4a^2+b^2+c^2}+\frac{9}{2}\)

\(=\frac{1}{2}\Sigma\frac{\left(b-a\right)\left(b+a\right)+\left(c-a\right)\left(c+a\right)}{\left(4a^2+b^2+c^2\right)}+\Sigma\frac{2a\left[\left(b-a\right)+\left(c-a\right)\right]}{4a^2+b^2+c^2}-\Sigma\frac{\left(b-c\right)^2}{4a^2+b^2+c^2}+\frac{9}{2}\)

\(=\frac{1}{2}\Sigma\left(\frac{\left(a-b\right)\left(a+b\right)}{a^2+4b^2+c^2}-\frac{\left(a-b\right)\left(b+a\right)}{4a^2+b^2+c^2}\right)-\Sigma\frac{2a\left(a-b\right)}{4a^2+b^2+c^2}-\Sigma\frac{\left(a-b\right)^2}{a^2+b^2+4c^2}+\frac{9}{2}\)

\(=\frac{1}{2}\Sigma\left(a-b\right)\left(a+b\right)\left(\frac{3a^2-3b^2}{\left(a^2+4b^2+c^2\right)\left(4a^2+b^2+c^2\right)}\right)-\Sigma\frac{2a\left(a-b\right)}{4a^2+b^2+c^2}-\Sigma\frac{\left(a-b\right)^2}{a^2+b^2+4c^2}+\frac{9}{2}\)

\(=\Sigma\frac{3\left(a-b\right)^2\left(a+b\right)^2}{2\left(a^2+4b^2+c^2\right)\left(4a^2+b^2+c^2\right)}-\Sigma\frac{2a\left(a-b\right)}{4a^2+b^2+c^2}-\Sigma\frac{\left(a-b\right)^2}{a^2+b^2+4c^2}+\frac{9}{2}\)

\(=\Sigma\left(a-b\right)^2\left[\frac{3\left(a+b\right)^2}{2\left(a^2+4b^2+c^2\right)\left(4a^2+b^2+c^2\right)}-\frac{1}{a^2+b^2+4c^2}\right]-\Sigma\frac{2a\left(a-b\right)}{4a^2+b^2+c^2}+\frac{9}{2}\)

\(=\Sigma\left(a-b\right)^2\left[\frac{3\left(a+b\right)^2\left(a^2+b^2+4c^2\right)-2\left(a^2+4b^2+c^2\right)\left(4a^2+b^2+c^2\right)}{2\left(a^2+4b^2+c^2\right)\left(4a^2+b^2+c^2\right)\left(a^2+b^2+4c^2\right)}\right]-\Sigma\frac{2a\left(a-b\right)}{4a^2+b^2+c^2}+\frac{9}{2}\)Ai đó làm tiếp giúp em vs:( Em chỉ nghĩ ra được tới đây thôi.

9 tháng 10 2019

Ta có:

\(a^2+b^2\ge2\sqrt{a^2b^2}=2ab;a^2+c^2\ge2\sqrt{a^2c^2}=2ac;a^2+a^2\ge2\sqrt{a^2a^2}=2a^2\)

Khi đó:

\(4a^2+b^2+c^2\ge2a\left(a+b+c\right)\)

\(\Rightarrow\frac{1}{4a^2+b^2+c^2}\le\frac{1}{6a}\)

Tương tự:

\(\frac{1}{a^2+4b^2+c^2}\le\frac{1}{6b};\frac{1}{a^2+b^2+4c^2}\le\frac{1}{6c}\cdot\)

\(\Rightarrow M\le\frac{1}{6}\cdot\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{ab+bc+ca}{abc}\cdot\frac{1}{6}\) \(a+b+c\ge3\sqrt[3]{abc}\Rightarrow3\ge3\sqrt[3]{abc}\Rightarrow abc\le1\)

Theo BĐT \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=3\)

Khi đó \(M\le\frac{3}{1}\cdot\frac{1}{6}=\frac{1}{2}\)

Dấu "=" xảy ra tại \(a=b=c=1\)

P/S:Is that true ??

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0
18 tháng 9 2017

Nối BD. Gọi O là trung điểm DB
Xét tam giác ABD
Có: M là trung điểm AB ( gt)
O là trung điểm DB ( cách lấy O)
\(\Rightarrow\) OM là đường trung bình  ABD
\(\Rightarrow\)OM // AD, OM = \(\frac{1}{2}\) AD ( đl)
\(\Rightarrow\)góc AEM = OMN ( 2 góc đồng vị) (1)
Tương tự ta chứng minh được ON là đường trung bình tam giác DBC
\(\Rightarrow\) ON // BC; BC
\(\Rightarrow\)góc OMN = MFB ( 2 góc so le trong) (2)
Mà AD = Bc (gt)
\(\Rightarrow\)OM=ON ( \(\frac{1}{2}\)AD)
Xét OMN
có OM = ON
\(\Rightarrow\) Tam giác OMN cân tại O ( đn)
\(\Rightarrow\) góc OMN = ONM ( đl) (3)
Từ (1); (2); (3) \Rightarrow góc AEM = MFB ( đpc/m)

6 tháng 12 2018

cho xin cái hình

5 tháng 10 2019

TH1: y = 0

\(x^2+3^0=3026\)

=> \(x^2=3025\)

=> \(x=\pm55\)

TH2: \(y\ge1\)

Có: \(x^2=3026-3^y\) 

+) \(VP=3026-3^y=2+3024-3^y\)chia 3 dư 2 (1) 

+) \(VT=x^2\)chia 3 dư 0 hoặc 1

x = 3k  => \(x^2\)chia hết cho 3 nghĩa là chia 3 dư 0

x = 3k + 1 => \(x^2=9k^2+6k+1\) chia 3 dư 1

\(x=3k+2\Rightarrow x^2=9k^2+12k+4=9k^2+12k+3+1\) chia 3 dư 1

Vậy  \(VT=x^2\)chia 3 dư 0 hoặc 1 (2)

Từ (1) , (2) => \(VT\ne VP\)

=> \(y\ge1\)loại

Vậy y = 0 và \(x=\pm55\).

5 tháng 10 2019

với y =0 =>x2+1=3026 <=> x=55

với y\(\ge1\) thì 3016 \(⋮̸\)3 mà 3y \(⋮3\)nên x2\(⋮̸\)3 nên có dạng x=3k+1 hoặc x=3k+2  (k\(\in N\))

xét x=3k+1 => (3k+1)2+3y=301=26 <=> 9k2+6k+1+3y=3016 <=> 9k2+6k+3y=3025

9k2+6k+3y\(⋮\)3 mà 3015\(⋮̸\)3 nên phương trình vô nghiệm

tương tự x=3k+2 ta cũng có pt vo nghiệm

vậy x=55;y=1 là nghiệm duy nhất