Cho tam giác ABC nhọn và M là điểm bất kì nằm trong tam giác. Tìm GTNN của biểu thức:
T = MA . BC + MB . CA + MC . AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(\sqrt[3]{25-x^3}=t\Leftrightarrow t^3+x^3=25\Leftrightarrow\left(t+x\right)^3-3tx\left(t+x\right)=25\)(1)
pt trở thành:
\(xt\left(x+t\right)=30\) Thế vào (1) ta có:
\(\left(t+x\right)^3-3.30=25\)
<=> \(t+x=\sqrt[3]{115}\)
=> \(xt=\frac{30}{\sqrt[3]{115}}\)
x, t là nghiệm của phương trình bậc 2:
\(X^2-\sqrt[3]{115}X+\frac{30}{\sqrt[3]{115}}=0\)(1)
Đen ta <0
=> Phương trình (1) vô nghiệm.
=> Không tồn tại x
Vậy phương trình ban đầu vô nghiệm.
1.
Ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{pq}\)
<=> \(pq\left(x+y\right)=xy\)
Đặt: \(x=ta;y=tb\) với (a; b)=1
Ta có: \(pq.\left(a+b\right)=tab\)
<=> \(pq=\frac{t}{a+b}.ab\left(1\right)\)
vì (a; b) =1 => a, b, a+b đôi một nguyên tố cùng nhau. (2)
(1); (2) => \(t⋮a+b\)
=> \(pq⋮ab\Rightarrow pq⋮a\)vì p; q là hai số nguyên tố nên \(a\in\left\{1;p;q;pq\right\}\)
TH1: a=1 => \(pq⋮b\Rightarrow b\in\left\{1;p;q;pq\right\}\)
+) Khả năng 1: b=1
(1) => \(t=2pq\)=> \(x=y=2pq\)( thỏa mãn)
+) Khả năng 2: b=p
(1) => \(pq=\frac{t}{1+p}.p\Leftrightarrow t=\left(1+p\right)q=q+pq\)
=> \(x=at=q+pq;\)
\(y=at=pq+p^2q\)(tm)
+) Khả năng 3: b=q
tương tự như trên
(1) => \(t=p\left(1+q\right)=p+pq\)
=> \(x=at=p+pq\)
\(y=bt=q\left(p+pq\right)=pq+pq^2\)
+) Khả năng 4: \(b=pq\)
(1) =>\(t=1+pq\)
=> \(x=1+pq;y=pq\left(1+pq\right)=1+p^2q^2\)
TH2: \(a=p\)
=> \(q⋮b\Rightarrow\orbr{\begin{cases}b=1\\b=q\end{cases}}\)
+) KN1: \(b=1\)
Em làm tiếp nhé! Khá là dài
2. \(x^4+4=p.y^4\)
+) Với x chẵn
Đặt x=2m ( m thuộc Z)
=> \(16m^2+4=py^4\)
=> \(py^4⋮4\Rightarrow y^4⋮4\Rightarrow y^2⋮2\Rightarrow y⋮2\)=> Đặt y=2n ;n thuộc Z
Khi đó ta có:
\(16m^2+4=p.16n^2\Leftrightarrow4m^2+1=p.4n^2⋮4\)=> \(1⋮4\)( vô lí)
=> X chẵn loại
+) Với x lẻ
pt <=> \(x^4+4=py^4\)
<=> \(\left(x^2+2x+2\right)\left(x^2-2x+2\right)=py^4\)(i)
Gọi \(\left(x^2+2x+2;x^2-2x+2\right)=d\)(1)
=> \(x^2+2x+2⋮d\)
\(x^2-2x+2⋮d\)
=.> \(\left(x^2+2x+2\right)-\left(x^2-2x+2\right)=4x⋮d\)
Vì x lẻ => d lẻ
=> \(x⋮d\)
=> \(2⋮d\Rightarrow d=1\)
Do đó: \(\left(2x^2+2x+2;2x^2-2x+2\right)=1\)(ii)
Từ (i) và (ii) có thể đặt: với \(ab=y^2\)sao cho:
\(x^2+2x+2=pa^2;\)
\(x^2-2x+2=b^2\)<=> \(\left(x-1\right)^2+1=b^2\)\(\Leftrightarrow\left(x-1-b\right)\left(x-1+b\right)=-1\)
<=> x=b=1 hoặc x=1; b=-1
Với x=1 => a^2.p=5 => p=5
a. \(x\left(x^2+x+1\right)=4y\left(y+1\right)\)
<=> \(x^3+x^2+x+1=4y^2+4y+1\)
<=> \(\left(x+1\right)\left(x^2+1\right)=\left(2y+1\right)^2\)là một số chính phương lẻ
=> \(x+1;x^2+1\) là 2 số lẻ (1)
Chứng minh: \(\left(x+1;x^2+1\right)=1\)
Đặt: \(\left(x+1;x^2+1\right)=d\)
=> \(\hept{\begin{cases}x-1⋮d\\x^2+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}x^2-1⋮d\\x^2+1⋮d\end{cases}}}\)
=> \(\left(x^2+1\right)-\left(x^2-1\right)⋮d\)
=> \(2⋮d\)(2)
Từ (1) => d lẻ ( 3)
(2); (3) => d =1
Vậy \(\left(x+1;x^2+1\right)=1\)
Có \(\left(x+1\right)\left(x^2+1\right)\) là số chính phương
Từ 2 điều trên => \(\left(x+1\right),\left(x^2+1\right)\) là 2 số chính phương
Mặt khác \(x^2\) là số chính phương
Do đó: x = 0
Khi đó: \(4y\left(y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=0\\y=-1\end{cases}}\)
Vậy phương trình có nghiệm ( x; y) là ( 0; 0) hoặc (0; -1)
\(S=\frac{38}{25}+\frac{9}{10}-\frac{11}{15}+\cdot\cdot\cdot+\frac{197}{4851}-\frac{199}{4950}\)
\(\Rightarrow S=\frac{38}{25}+\frac{18}{20}-\frac{22}{30}+\cdot\cdot\cdot+\frac{394}{9702}-\frac{398}{9900}\)
\(\Rightarrow S=\frac{38}{25}+2\cdot\left(\frac{9}{20}-\frac{11}{30}+\cdot\cdot\cdot+\frac{197}{9702}-\frac{199}{9900}\right)\)
\(\Rightarrow S=\frac{38}{25}+2\cdot\left(\frac{9}{4\cdot5}-\frac{11}{5\cdot6}+\cdot\cdot\cdot+\frac{197}{98\cdot99}-\frac{199}{99\cdot100}\right)\)
\(\Rightarrow S=\frac{38}{25}+2\cdot\left(\frac{1}{4}+\frac{1}{5}-\frac{1}{5}-\frac{1}{6}+\cdot\cdot\cdot-\frac{1}{99}-\frac{1}{100}\right)\)
\(\Rightarrow S=\frac{38}{25}+2\cdot\left(\frac{1}{4}-\frac{1}{100}\right)\)
\(\Rightarrow S=\frac{38}{25}+2\cdot\left(\frac{25}{100}-\frac{1}{100}\right)\)
\(\Rightarrow S=\frac{38}{25}+2\cdot\frac{24}{100}\)
\(\Rightarrow S=\frac{38}{25}+2\cdot\frac{6}{25}\)
\(\Rightarrow S=\frac{38}{25}+\frac{12}{25}\)
\(\Rightarrow S=\frac{50}{25}=2\)
Gọi chiều rộng = 2k ; chiều dài = 3k ( k khác 0 )
Ta có : 2k x 3k = 5400
6k x k = 5400
k x k = 5400 : 6
k x k = 900
=> k = 30
=> Chiều rộng = 30 x 2 = 60 m
Chiều dài = 30 x 3 = 90 m
Chu vi của HCN là : ( 60 + 90 ) x 2 = 300 m
Hok tốt
Coi chiều rộng có 2 phần chiều dài có 3 phần
Ta được hình chữ nhật và chia hình chữ nhật thành 6 hình vuông nhỏ có mỗi cạnh bằng 1 phần
Diện tích một hình vuông nhỏ là: 5400:6=900 (m^2)
Vì 900=30x30 nên cạnh của hình vuông nhỏ là: 30 (m)
Một phần tương ứng với 30 (m)
Chiều dài là: 30x3 =90 (m)
Chiều rộng là: 30x2 =60 (m)
Chu vi hình chữ nhật là: (90+60)x2=300 (m)
Ta có : \(\left(x^2-y^2\right)^2+4x^2y^2+x^2-2y^2=0\)
\(\Leftrightarrow\left(x^2+y^2\right)^2-2.\left(x^2+y^2\right)+1=1-3x^2\)
\(\Leftrightarrow\left(x^2+y^2-1\right)^2=1-3x^2\le1\forall x\)
\(\Rightarrow\left(x^2+y^2-1\right)\le1\)
\(\Rightarrow-1\le x^2+y^2-1\le1\)
\(\Rightarrow0\le x^2+y^2\le2\)
\(C=x^2+y^2\) min tại \(x=y=0\)
\(C=x^2+y^2\)max tại \(x=0,y=\sqrt{2}\)
Bạn đầu tiên có 20 cách chọn
Bạn thứ hai có 20-1=19 cách chọn
Ban thứ ba có 19-1=18 cách chọn
Bạn thứ tư có 18-1=17 cách chọn
Bạn thứ năm có 17-1=16 cách chọn
Vậy cô có 20+19+18+17+16= 90 cách chọn
Hk tốt nhé!
Có 20 cách chọn bạn thứ nhất.
Sau khi chọn được bạn thứ nhất thì có 19 cách chọn người thứ hai
\(\Rightarrow\)Có \(20.19=380\) cách chọn.
Tuy nhiên khi chọn 5 bạn đi trực nhật như trên thì mỗi bạn được lặp lại 2 lần.
Vậy nên có tất cả \(380:2=190\) cách chọn ra 5 bạn đi trực nhật.
\(5^a+25\)
\(+,a=0\Rightarrow5^a+25=26\left(l\right)\)
\(+,a=1\Rightarrow5^a+25=30\left(l\right)\)
\(+,a=2\Rightarrow5^a+25=50\left(l\right)\)
\(+,a=3\Rightarrow5^a+25=150\left(l\right)\)
\(+,a\ge4\Rightarrow5^a=\left(....25\right)+25=\left(....50\right)\Rightarrow\hept{\begin{cases}5^a+25⋮2\\5^a+25⋮4̸\end{cases}}\left(l\right)\)
Gọi \(I\)là giao điểm của \(BC\)và \(AM\)còn \(H\)và \(K\)theo thứ tự là hình chiếu của \(B\)và \(C\)trên \(AM\)
Ta có: \(BI\ge BH\)và \(CI\ge CH\)( quan hệ đường xiên - đường vuông góc )
Đẳng thức xảy ra khi \(AM\perp BC\)
Suy ra:
\(MA.BC=MA.\left(BI+BC\right)\ge MA.\left(BH+CK\right)\)
\(\Leftrightarrow MA.BC\ge MA.BH+MA.CK\)
\(\Leftrightarrow MA.BC\ge2S_{MAB}+2S_{MCA}\) \(\left(1\right)\)
Chứng minh tương tự ta cũng có: \(\Leftrightarrow MA.BC\ge2S_{MAB}+2S_{MCA}\) \(\left(2\right)\)
( Đẳng thức xảy ra khi \(MB\perp CA\))
\(MC.AB\ge2S_{MCA}+2S_{MBC}\) \(\left(3\right)\)
Cộng từng vế với ba bất đẳng thức \(\left(1\right)\)và \(\left(2\right)\)và \(\left(3\right)\)ta được:
\(MA.BC+MB.CA+MC.AB\ge4.\left(S_{MAB}+S_{MCA}+S_{ABC}\right)\)
Đặt \(S=S_{ABC}\)thì \(S\)không đổi và \(T\ge4S\)
Vậy: \(T_{min}=4S\)khi \(M\)là trực tâm \(\Delta ABC\)
Dựng hình bình hành AMBN. Lúc đó \(MA.BC=BN.BC\ge2S_{BCN};MB.CA\ge2S_{CAN}\)
Suy ra \(MA.BC+MB.CA\ge2\left(S_{BCN}+S_{CAN}\right)=2\left(S_{ABC}+S_{AMB}\right)\) (Vì tứ giác AMBN là hình bình hành)
Tương tự: \(MB.CA+MC.AB\ge2\left(S_{ABC}+S_{BMC}\right);MC.AB+MA.BC\ge2\left(S_{ABC}+S_{CMA}\right)\)
Do vậy \(2\left(MA.BC+MB.CA+MC.AB\right)\ge2\left(3S_{ABC}+S_{AMB}+S_{BMC}+S_{CMA}\right)=8S_{ABC}\)
Suy ra \(2T\ge8S_{ABC}\Rightarrow T\ge4S_{ABC}.\)
Dấu "=" xảy ra khi và chỉ khi BN vuông góc BC, AN vuông góc AC <=> M là trực tâm \(\Delta\)ABC.