K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2019

có bạn nào giải hộ mik nhé!

12 tháng 9 2019

Ta có tính chất: Hiệu của một số với tổng các chữ số của nó chia hết cho 9

( xem cách chứng minh tại link Câu hỏi của Nguyễn Phương Chi - Toán lớp 6 - Học toán với OnlineMath )

Do đó ta có:

 \(A-S\left(A\right)⋮9\)

\(S\left(A\right)-S\left(S\left(A\right)\right)⋮9\)

\(S\left(S\left(A\right)\right)-S\left(S\left(S\left(A\right)\right)\right)⋮9\)

=> Cộng lại và triệt tiêu ta có: \(A-S\left(S\left(S\left(A\right)\right)\right)⋮9\)(1)

Ta có: \(A=2^{100}=2.2^{99}=2.8^{33}\)=> Số chữ số của A < 34

=> \(S\left(A\right)< 34.9=306\)

=> \(S\left(S\left(A\right)\right)< 3.9=27\)

=> \(S\left(S\left(S\left(A\right)\right)\right)< 2.9=18\) (2)

Mặt khác \(A=2^{100}=2.2^{99}=2.8^{33}\equiv2\left(-1\right)^{33}\equiv-2\equiv7\left(mod9\right)\)

=> \(A-7⋮9\)(3)

Từ (1); (2); (3) => S(S(S(A))) có thể bằng 7 hoặc 16

=> S(S(S(S(A)))) = 7

:)))) . Bài này thú vị quá! <3

11 tháng 9 2019

A B C D H I J K

+) Ta có: \(\widehat{BAI}=\widehat{DAI}=\frac{1}{2}\widehat{BAD}\)( AI là phân giác \(\widehat{BAD}\))

\(\widehat{ADI}=\widehat{CDI}=\frac{1}{2}\widehat{ADC}\)(1)

=> \(\widehat{ADI}+\widehat{DAI}=\frac{1}{2}\widehat{ADC}+\frac{1}{2}\widehat{BAD}=\frac{1}{2}\left(\widehat{ADC}+\widehat{BAD}\right)=\frac{1}{2}.180^o=90^o\)

Xét \(\Delta\)AID có: \(\widehat{ADI}+\widehat{DAI}=90^o\)=> \(\widehat{AID}=90^o\)

=> \(\Delta\) AID vuông tại I; có H là trung điểm AD => \(HI=\frac{1}{2}AD=AI=ID\Rightarrow HI=\frac{10}{2}=5cm\)

Tương tự ta chứng minh được: 

\(\Delta\)BJC vuông tại J; có K là trung điểm BC => \(JK=\frac{1}{2}AC=BK=KC\Rightarrow JK=\frac{12}{2}=6cm\)

+) Xét hình thang ABCD có: HK là đường trung bình

=> HK//DC  (i)

và \(HK=\frac{1}{2}\left(AB+DC\right)=15\left(cm\right)\)

+) Xét tam giác HDI có HD=HI => Tam giác HDI cân tại H => ^HDI=^HDI  (2)

Từ (1) , (2) => ^HID =^CDI mà hai góc ở vị trí so le trong => HI//DC   (ii)

Tương tự chứng minh được KJ//DC  (iii)

Từ (i); (ii); (iii) => H; I; J; K thẳng hàng => \(IJ=HK-HI-JK=15-5-6=4\left(cm\right)\)

11 tháng 9 2019

Dạ :3 Con cảm ơn cô ạ :)

11 tháng 9 2019

Bài 1 : \(\frac{2}{3}< \left[\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{4}{96}\right]:5\times x< \frac{5}{6}\)

=> \(\frac{2}{3}< \left[\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{1}{24}\right]:5\cdot x< \frac{5}{6}\)

=> \(\frac{2}{3}< \left[\frac{1}{6}+\frac{1}{24}+\frac{2}{15}+\frac{3}{40}\right]:5\cdot x< \frac{5}{6}\)

=> \(\frac{2}{3}< \frac{5}{12}:5\cdot x< \frac{5}{6}\)

=> \(\frac{2}{3}< \frac{1}{12}\cdot x< \frac{5}{6}\)

=> \(\frac{2}{3}< \frac{x}{12}< \frac{5}{6}\)

=> \(\frac{8}{12}< \frac{x}{12}< \frac{10}{12}\)

=> x = 9

Bài 2 : \(\frac{\left[\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right]}{x}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\)

=> \(\frac{\left[1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}\right]}{x}=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{11\cdot12}\)

=> \(\frac{\left[1-\frac{1}{16}\right]}{x}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{11}-\frac{1}{12}\)

=> \(\frac{15}{\frac{16}{x}}=1-\frac{1}{12}\)

=> \(\frac{15}{\frac{16}{x}}=\frac{11}{12}\)

=> \(\frac{15}{16}:x=\frac{11}{12}\)

=> \(x=\frac{45}{44}\)

Bài 3 : \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\times(x+1):2}=\frac{399}{400}\)

=> \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\times(x+1)}=\frac{399}{400}\)

=> \(2\left[\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\times(x+1)}\right]=\frac{399}{400}\)

=> \(2\left[\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\times(x+1)}\right]=\frac{399}{400}\)

=> \(\left[\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\right]=\frac{399}{800}\)

=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{399}{800}\)

=> \(\frac{1}{x+1}=\frac{1}{800}\)

=> x = 799

11 tháng 9 2019

Bài 2 :

\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right):x=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\) (*)

Ta có : \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}=\frac{8}{16}+\frac{4}{16}+\frac{2}{16}+\frac{1}{16}=\frac{8+4+2+1}{16}=\frac{15}{16}\) (1)

Lại có : \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{11.12}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}\)

\(=1\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+...+\left(-\frac{1}{11}+\frac{1}{11}\right)-\frac{1}{12}\)

\(=1-\frac{1}{12}=\frac{11}{12}\) (2)

Thay (1) và (2) vào biểu thức (*) ta được :

\(\frac{15}{16}:x=\frac{11}{12}\)

\(\Leftrightarrow x=\frac{15}{16}:\frac{11}{12}\)

\(\Leftrightarrow x=\frac{45}{44}\)

Vậy : \(x=\frac{45}{44}\)

1. Giả sử p và q là các số nguyên sao cho: \(\frac{p}{q}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....-\frac{1}{1334}+\frac{1}{1335}\)CMR: \(P⋮2003\)2. CM:\(\forall n\in N,n\ge2\)thì\(An=2^{2^n}+4⋮10\)3.CM: \(\forall n\in N,n\ge1\)thì \(Bn=4^n+15n-1⋮9\)4.CM: \(\forall n\in Z,n\ge0\)thì \(Cn=2^{3^n}+1⋮3n+1\)nhưng \(⋮̸3^n+2\)5.CM:tổng hợp phương của 3 số tự nhiên liên tiếp n,n+1,n+2\(⋮9\forall n\ge0\)6. Cm: A=\(\frac{5^{125}-1}{5^{25}-1}\)không phải là...
Đọc tiếp

1. Giả sử p và q là các số nguyên sao cho: \(\frac{p}{q}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....-\frac{1}{1334}+\frac{1}{1335}\)

CMR: \(P⋮2003\)

2. CM:\(\forall n\in N,n\ge2\)thì\(An=2^{2^n}+4⋮10\)

3.CM: \(\forall n\in N,n\ge1\)thì \(Bn=4^n+15n-1⋮9\)

4.CM: \(\forall n\in Z,n\ge0\)thì \(Cn=2^{3^n}+1⋮3n+1\)nhưng \(⋮̸3^n+2\)

5.CM:tổng hợp phương của 3 số tự nhiên liên tiếp n,n+1,n+2\(⋮9\forall n\ge0\)

6. Cm: A=\(\frac{5^{125}-1}{5^{25}-1}\)không phải là một số nguyên tố 

7.Tìm tất cả các số nguyên tố P sao cho tổng của tất cả các ước số tự nhiên của các phương trình là 1 số chính phương

8. Biết P và \(8p^2-1\)cũng là số nguyên tố

9. Tìm tất cả các số nguyên tố có 4 chữ số \(\overline{abcd}\)sao cho \(\overline{ab}\)\(\overline{ac}\)là các số nguyên tố và \(b^2=\overline{cd}+b-c\)

10.Cho \(\overline{abc}\)là 1 số nguyên tố. CM phương trình: \(ax^2+bx+c=0\)không có nghiệm hữu tỉ

 

0
11 tháng 9 2019

a, b, c là 3 cạnh của tam giác vuông => a, b, c>0 

Chứng minh  \(a^{2n}+b^{2n}\le c^{2n}\)  (1)  quy nạp theo n.

+) Với n=1 \(a^2+b^2=c^2\)  ( đúng)

+) Với n=2 \(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2=c^4-2a^2b^2< c^4\)

=> (1) đúng với n=2

+) G/s: (1) đúng với n  . Nghĩa là: \(a^{2n}+b^{2n}\le c^{2n}\)

Ta chứng minh (1) đúng với n+1

Thật vậy ta có:

\(a^{2\left(n+1\right)}+b^{2\left(n+1\right)}=a^{2n+2}+b^{2n+2}=a^{2n}.a^2+b^{2n}.b^2^{ }\)

\(=\left(a^{2n}+b^{2n}\right)\left(a^2+b^2\right)-a^2.b^{2n}-a^{2n}.b^2\le c^{2n}.c^2-a^2b^{2n}-a^{2n}.b^2< c^{2n}.c^2=c^{2\left(n+1\right)}\)

=> (1) đúng với n+1

Vậy (1) đúng với mọi n>0

'Vậy \(a^{2n}+b^{2n}\le c^{2n}\)

11 tháng 9 2019

\(3\left(x^2-2x-xy\right)+y^2=0\)

\(\Leftrightarrow3x^2-6x-3xy+y^2=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)-2x^2-6x-xy=0\)

\(\Leftrightarrow\left(x-y\right)^2-2\left(x^2+2x+1\right)-x-2-xy=0\)

Đến đây thì .....

11 tháng 9 2019

Em thử nha, ko chắc:v

PT \(\Leftrightarrow3x^2-3x\left(2+y\right)+y^2=0\)

\(\Delta=\left[-3\left(2+y\right)\right]^2-12y^2=-3y^2+36y+36\)

\(\Leftrightarrow6-4\sqrt{3}\le y\le6+4\sqrt{3}\). Mà \(y\inℤ\) nên\(0\le y\le12\)

Rồi thay từng số y vào giải pt bậc 2 biến x. 

P/s: Em làm đúng ko ta?

17 tháng 11 2019

nguowch đề :))

17 tháng 11 2019

\(ab^2+b+7⋮a^2b+a+b\Leftrightarrow a\left(ab^2+b+7\right)-b\left(a^2b+a+b\right)⋮a^2b+a+b\Leftrightarrow7a-b^2⋮a^2b+a+b\left(1\right)\)

\(+,7a=b^2\Rightarrow\left(a;b\right)=\left(7k^2;7k\right)\left(k\text{ nguyên dương}\right)\)

\(+,7a>b^2\text{ từ 1}\Rightarrow7a-b^2\ge a^2b+a+b\Leftrightarrow6a\ge a^2b+b+b^2\text{ mà: b là số nguyên dương}\Rightarrow b< 3\Leftrightarrow b\in\left\{1;2\right\}\)

làm tiếp

\(+,7a< b^2\text{ từ (1)}\Rightarrow b^2-7a\ge a^2b+a+b\Leftrightarrow voli\text{ :)}.Tự\text{ kết luận}\)

10 tháng 9 2019

A B C I K

+) \(\Delta\)ABC cân => \(\hept{\begin{cases}AB=AC\left(1\right)\\\widehat{ABC}=\widehat{ACB}\end{cases}}\)

Ta có:  \(\widehat{BAC}=100^o\)=> \(\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{BAC}}{2}=40^o\)

\(\widehat{IBC}=\widehat{ABC}-\widehat{ABI}=40^o-10^o=30^o\)

\(\widehat{ACI}=\widehat{BCI}=\frac{\widehat{ACB}}{2}=\frac{40^o}{2}=20^o\)(i)

+) Trên nửa mặt phẳng bờ AC  chứa B lấy điểm K sao cho \(\Delta\)AKC đều => \(\hept{\begin{cases}\widehat{KAC}=\widehat{ACK}=\widehat{AKC}=60^o\\AK=KC=AC\left(2\right)\end{cases}}\)

=> \(\widehat{BAK}=\widehat{BAC}-\widehat{KAC}=100^o-60^o=40^o\)

Từ (1); (2) => AB=AK => \(\Delta\)ABK cân tại A => \(\widehat{ABK}=\widehat{AKB}=\frac{180^o-\widehat{BAK}}{2}=70^o\)

=> \(\widehat{KBC}=\widehat{ABK}-\widehat{ABC}=70^o-40^o=30^o\)

\(\widehat{KCB}=\widehat{KCA}-\widehat{ACB}=60^o-40^o=20^o\)

+) Xét \(\Delta\)BIC và \(\Delta\)BKC có:

\(\widehat{IBC}=\widehat{KBC}\left(=30^o\right)\)

BC chung

\(\widehat{ICB}=\widehat{KCB}\left(=20^o\right)\)

=>  \(\Delta\)BIC = \(\Delta\)BKC 

=> CK =CI (3)

(2); (3) => CI =CA =>  \(\Delta\)ACI cân tại C

b)   \(\Delta\)ACI cân tại C có: \(\widehat{ACI}=20^o\) (theo (i) )

=> \(\widehat{CIA}=\widehat{CAI}=\frac{180^o-\widehat{ACI}}{2}=80^o\)

=> \(\widehat{BAI}=\widehat{BAC}-\widehat{CAI}=100^o-80^o=20^o\)

9 tháng 9 2019

Vẫn thiếu: r là số dư của a chia cho 42 hay r<42.

Ta có:  \(a=42x+r=2.3.7x+r\)

Vì a là số nguyên tố

=> r không thể chia hết cho các số 2; 3; 7

Mặt khác r là hợp số ( r không phải là số nguyên tố; r khác 1)

Các số không chia hết cho 2 và là hợp số là: 9; 15; 21;25;27;33;35;39  loại đi các số không chia hết cho 3 , 7

=> r =25

Như vậy a=42.x+25 <200

Nếu x\(\ge\)5 => 42.x+25 \(42.5+25\ge235>200\)( loại)

Do đó x<5

+) x = 0 

=> a = r=25 loại

+) x=1

=> a=42.1+25=67 ( là số nguyên tố) => a=67 thỏa mãn

+) x=2

=> a=42.2+25=109  ( tm)

+) x=3 

=> a=42.3+25=151 (tm)

+) x=4

=> a=42.2+25 =193 ( tm)

Vậy \(a\in\left\{67;109;151;193\right\}\)

11 tháng 9 2019

Đặt \(u=\frac{bc}{a^2};v=\frac{ca}{b^2};w=\frac{ab}{c^2}\). BĐT quy về:

\(\frac{1}{\sqrt{8u+1}}+\frac{1}{\sqrt{8v+1}}+\frac{1}{\sqrt{8w+1}}\ge1\) với uvw = 1

Đặt \(\sqrt{8u+1}=x;\sqrt{8v+1}=y;\sqrt{8w+1}=z\)

Ta phải chứng minh \(xy+yz+zx\ge xyz\) (*) với \(\left(x^2-1\right)\left(y^2-1\right)\left(z^2-1\right)=512\)

Ta có: \(\left(x^2-1\right)\left(y^2-1\right)\left(z^2-1\right)=512\)

\(\Leftrightarrow\Sigma x^2+x^2y^2z^2=513+\Sigma x^2y^2\)

(*) \(\Leftrightarrow\Sigma x^2y^2+2xyz\left(x+y+z\right)\ge x^2y^2z^2\)'

\(\Leftrightarrow\Sigma x^2+2xyz\left(x+y+z\right)\ge513\)

Và rất đơn giản bởi AM-GM, điều đó hiển nhiên đúng:

Có:\(\left(8v+1\right)\left(8u+1\right)\left(8w+1\right)\ge729\sqrt[9]{u^8v^8w^8}=729\)

Nên  \(xyz=\sqrt{\left(8v+1\right)\left(8u+1\right)\left(8w+1\right)}\)

\(\ge\sqrt{729}=27\). Và \(x^2+y^2+z^2\ge3\sqrt[3]{\left(xyz\right)^2}=3.9=27;a+b+c\ge9\)

P/s: Bài dài quá em chẳng muốn check lại. Có sai chỗ nào ko ta? Bài này lúc đầu em định uct nhưng ko ra.

11 tháng 9 2019

Một BĐT mạnh (tổng quát) hơn!

Cho a, b, c > 0 và \(n\ge1\). Chứng minh:

\(\Sigma\frac{a^n}{\sqrt{a^2+8bc}}\ge\frac{1}{3}\left(a^{n-1}+b^{n-1}+c^{n-1}\right)\)