K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2019

TH1: y = 0

\(x^2+3^0=3026\)

=> \(x^2=3025\)

=> \(x=\pm55\)

TH2: \(y\ge1\)

Có: \(x^2=3026-3^y\) 

+) \(VP=3026-3^y=2+3024-3^y\)chia 3 dư 2 (1) 

+) \(VT=x^2\)chia 3 dư 0 hoặc 1

x = 3k  => \(x^2\)chia hết cho 3 nghĩa là chia 3 dư 0

x = 3k + 1 => \(x^2=9k^2+6k+1\) chia 3 dư 1

\(x=3k+2\Rightarrow x^2=9k^2+12k+4=9k^2+12k+3+1\) chia 3 dư 1

Vậy  \(VT=x^2\)chia 3 dư 0 hoặc 1 (2)

Từ (1) , (2) => \(VT\ne VP\)

=> \(y\ge1\)loại

Vậy y = 0 và \(x=\pm55\).

5 tháng 10 2019

với y =0 =>x2+1=3026 <=> x=55

với y\(\ge1\) thì 3016 \(⋮̸\)3 mà 3y \(⋮3\)nên x2\(⋮̸\)3 nên có dạng x=3k+1 hoặc x=3k+2  (k\(\in N\))

xét x=3k+1 => (3k+1)2+3y=301=26 <=> 9k2+6k+1+3y=3016 <=> 9k2+6k+3y=3025

9k2+6k+3y\(⋮\)3 mà 3015\(⋮̸\)3 nên phương trình vô nghiệm

tương tự x=3k+2 ta cũng có pt vo nghiệm

vậy x=55;y=1 là nghiệm duy nhất

27 tháng 9 2019

\(\left(x-3\right)\left(x-1\right)-3\left(x-3\right)\)

\(=\left(x-3\right)\left(x-1-3\right)\)

\(=\left(x-3\right)\left(x-4\right)\)

27 tháng 9 2019

\(\left(x-1\right)\left(2x+1\right)+3\left(x-1\right)\left(x+2\right)\left(2x+1\right)\)

\(=\left(x-1\right)\left(2x+1\right)\left(1+3x+6\right)\)

\(=\left(x-1\right)\left(2x+1\right)\left(3x+7\right)\)

18 tháng 10 2019

xét n=0 => không thỏa mãn;n=1 => thỏa mãn; 

xét n\(\ge2\)

với n là số chẵn thì 

19n+1n=(19+1)(19n-1  - 19n-2  +... - 1)+ 2.1n = 20A + 2

18n +2n = (18+2)(18n-1-  18n-2.2 +  18n-3.22  - ... -  2n-1) + 2.2n = 20B +2.2n

=> để 20A +2 +20B+ 2.22n chia hết cho 5 thì 2.2n +2 chia hết cho 5 hay 2n +1 chia hết cho 5

n chẵn nên sẽ có dạng n= 2k (k\(\in N;k\ge1\)) => 2n +1 = 22k +1 = 4k +1

4k chỉ có chữ số tận cùng là 4 hoặc 6

với k chẵn thì 4k tận cùng là 6 nên 4k +1 không chia hết cho 5 (loại)

với k lẻ; k có dạng k = 2x+1 (\(x\in N;x\ge0\)) thì 4k tận cùng là 4 nên 4k +1 tận cùng là 5 ( thỏa mãn chia hết cho 5)  => n = 2k =2(2x+ 1) = 4x + 2 (x\(\in N;x\ge0\)) thỏa mãn

xét n là số lẻ; n =2k +1 (k\(\in Z;k\ge1\)) thì 19n+1n + 18n + 2n = (19+1)(19n-1- 19n-2  +...+ 1) + (18+2)(18n-1 -  18n-2.2 +...+  2n-1)

=20U +20V chia hết cho 5

vậy với mọi n là số lẻ hoặc n = 4x +2(x \(\in N;x\ge1\)) đều thỏa mãn

27 tháng 9 2019

+) 18 chia 5 dư 3

=> \(18^n;3^n\) có cùng số dư khi chia cho 5.

+) 19 chia 5 dư 4

=> \(19^n;4^n\)có cùng số dư khi chia cho 5

=> \(1^n+2^n+18^n+19^n\)chia hết cho 5 khi và chỉ khi \(1^n+2^n+3^n+4^n\) chia hết cho 5

+) Chúng ta đi tìm n bằng cách quy nạp:

Với n = 0 ta có: \(1^0+2^0+3^0+4^0=4⋮̸5\)

Với n = 1 ta có: \(1^1+2^1+3^1+4^1=10⋮5\)

Với n = 2 ta có: \(1^2+2^2+3^2+4^2=30⋮5\)

Với n = 3 ta có: \(1^3+2^3+3^3+4^3=100⋮5\)

Với n = 4 ta có: \(1^4+2^4+3^4+4^4=354⋮̸5\)

Với n = 5 ta có: \(1^5+2^5+3^3+4^3=1300⋮5\)

...

Từ điều trên chúng ta có nhận xét rằng, Các số n không chia hết cho 4 thì \(1^n+2^n+3^n+4^n\)chia hết cho 5.

+) Chứng minh: Xét n với 4 dạng : n = 4k; n= 4k+1 ; n= 4k+2; n= 4k +3 ( với k là số tự nhiên)

(i) Với n = 4k ta có: 

Vì \(1^k\)chia 5 dư 1; \(16^k\)chia 5 dư 1; \(81^k\)chia 5 dư 1;  \(256^k\)chia 5 dư 1

\(1^{4k}+2^{4k}+3^{4k}+4^{4k}=1^k+16^k+81^k+256^k\)

=> n =4k thì \(1^n+2^n+3^n+4^n\)không chia hết cho 5.

(ii) Với n = 4k + 1ta có:

Vì  \(1^k\)chia 5 dư 1; \(16^k.2\)chia 5 dư 2; \(81^k.3\)chia 5 dư 3; \(256^k.4\) chia 5 dư 4.

=> \(1^{4k+1}+2^{4k+1}+3^{4k+1}+4^{4k+1}=1^k+16^k.2+81^k.3+256^k.4\) chia 5 dư 10 => chia hết 5

=>  n =4k +1 thì \(1^n+2^n+3^n+4^n\) chia hết cho 5.

(iii)  Với n = 4k + 2  ta có:

Vì  \(1^k\)chia 5 dư 1; \(16^k.4\)chia 5 dư 4; \(81^k.9\)chia 5 dư 4; \(256^k.16\) chia 5 dư 1.

=> \(1^{4k+2}+2^{4k+2}+3^{4k+2}+4^{4k+2}=1^k+16^k.4+81^k.9+256^k.16\) chia 5 dư 10 => chia hết cho 5

=>  n =4k +2 thì \(1^n+2^n+3^n+4^n\) chia hết cho 5.

(iv)  Với n = 4k + 3ta có:

Vì  \(1^k\)chia 5 dư 1; \(16^k.8\)chia 5 dư 3; \(81^k.27\)chia 5 dư 2 ; \(256^k.64\) chia 5 dư 4.

=> \(1^{4k+1}+2^{4k+3}+3^{4k+3}+4^{4k+3}=1^k+16^k.8+81^k.27+256^k.64\) chia cho 5  dư 10 => chia hết cho 5

=>  n =4k +3 thì \(1^n+2^n+3^n+4^n\) chia hết cho 5.

=> n không chia hết cho 4 thì  \(1^n+2^n+3^n+4^n\) chia hết cho 5.

Vậy suy ra  \(1^n+2^n+18^n+19^n\) chia hết cho 5 khi n không chia hết cho 4.

27 tháng 9 2019

Trả lời : 

Sau khi ba bạn cho lẫn nhau thì mỗi bạn có : 

           24 : 3 = 8 ( quyển )

Sau khi Bình cho Kiên số vở bằng số vở Kiên hiện có là 8 quyển , như vậy Bình đã cho Kiên : 

           8 : 2  = 4 ( quyển )

Số vở của Kiên còn lại sau khi cho Hòa là :

            8 : 2   = 4 ( quyển )

Số vở của Bình sau khi nhận của Hòa  là : 

              8 + 4 = 12 ( quyển )

Sau khi Hòa cho Bình số vở Hòa hiện có thì Bình có 12 quyển như vậy Hòa đã cho Bình : 

              12 : 2  = 6 ( quyển )

Số vở của Hòa sau khi nhận từ Kiên là : 

               8 + 6   = 14 ( quyển )

Sau khi Kiên cho Hòa số vở hiện có là 14 như vậy Kiên đã cho Hòa : 

                14 : 2  = 7 

Số vở của Kiên lúc đầu là : 

                 4 + 7   =  11 ( quyển )

Số vở của  Hòa lúc đầu là : 

            14  - 7     =  7 ( quyển )

Số vở của  Bình lúc đầu là : 

               12   -   6   =  6 ( quyển )

Như vậy : Số vở lúc đầu của Kiên là : 11 quyển 

                 Số vở lúc đầu của Hòa là :  7 quyển 

                 Số vở lúc đầu của Bình là : 6 quyển 

Tk mk nha ####

28 tháng 3 2020

Câu hỏi của Hoàng Trần Trà My - Toán lớp 7 - Học toán với OnlineMath

30 tháng 6 2020

Theo đề bài ta có phương trình : \(\overline{abc}\cdot\overline{bca}\cdot\overline{cab}=\overline{2defghij9}=x\left(a,b,c,d,e,f,g,h,i,j,x\inℕ\right)\)

Ta có \(\overline{abc}\cdot\overline{bca}\cdot\overline{cab}=\overline{2defghij9}\) do chữ số tận cùng của tích \(ca\) (đặt là \(y\)) khi nhân với \(b\) thì có chữ số tận cùng là 9 (áp dụng phép đặt tính và nhân lần lượt các thừa số \(\overline{abc},\overline{bca},\overline{cab}\)). Vậy có 2 trường hợp xảy ra.

TH1 : \(yb=9=1\cdot1\cdot9=1\cdot3\cdot3\)

TH1a : \(a=1,b=1,c=9\Rightarrow x=119\cdot191\cdot911=20706119\)(không thỏa mãn yêu cầu đề bài vậy do \(x\) có 8 chữ số vậy TH1a vô lí)

TH1b : \(a=1,b=3,c=3\Rightarrow x=133\cdot331\cdot313=1379199\)(không thỏa mãn yêu cầu đề bài vậy do \(x\) có 7 chữ số vậy TH1b vô lí)

TH2 : \(yb=49=1\cdot7\cdot7\Rightarrow\overline{abc}=177\Rightarrow x=177\cdot771\cdot717=97846839\) 

(không thỏa mãn yêu cầu đề bài vậy do \(x\) có 8 chữ số vậy TH2 vô lí)

Vậy \(\overline{abc}\in\left\{\varnothing\right\}\)

24 tháng 9 2019

A B C H E F S T M K' K O G L N

* Bổ đề 1: Xét tam giác ABC có trực tâm H, tâm ngoại tiếp O và đường tròn Euler \(\left(\omega\right)\). Một đường thẳng \(\Delta\)đi qua H và cắt \(\left(\omega\right)\);(O) lần lượt tại I,K. Khi đó I là trung điểm của HK. (Các bạn tự chứng minh)

* Bổ đề 2: Xét tam giác ABC cân tại A. Điểm M thỏa mãn ^AMB = ^AMC. Khi đó AM là trung trực của BC.

* Giải bài toán: Kẻ đường thẳng qua A vuông góc với HT, đường thẳng này cắt (O) tại K' khác A.

Gọi M là trung điểm BC, HT cắt đường tròn (MEF) và (O) lần lượt tại G và L (G thuộc cung FM nhỏ)

Do (MEF) là đường tròn Euler-9 điểm của \(\Delta\)ABC nên áp dụng Bổ đề 1 ta thu được GH = GL

Đồng thời, kết hợp với ĐL Reim ta cũng suy ra tứ giác GFTC nội tiếp

Từ đây ^CGH = ^HFE = ^CBH. Suy ra ^BCG = ^BHG = ^THE = ^CAK' = ^CBK' và ^BGC = ^CK'B (= 1800 - ^BAC)

Suy ra tứ giác CK'BG là hình bình hành. Từ đó GK',BC,HN cùng đi qua điểm M

Do vậy tứ giác GLNK' là hình bình hành (Vì GH = GL và cùng song song với NK')

Dẫn đến K'G = NL = K'T, suy ra AG = AT = AS (Vì AK' là trung trực của GT)

Ta thấy \(\Delta\)ASG cân tại A (cmt); ^ALS = ^ALG (Vì (AS = (AT ). Theo Bổ đề 2 thì AL vuông góc SG (1)

Ta lại có AL vuông góc LN; LN // GK' nên AL vuông góc GK'  (2)

Từ (1) và (2) suy ra hai đường thẳng SG, GK' trùng nhau hay SM đi qua K'

Như vậy K' trùng K, đồng nghĩa với việc AK vuông góc với HT (đpcm).

30 tháng 9 2019

chúc mừng đạt lần nữa nhen

2 tháng 10 2019

ok. Mình không nghĩ là toán 8 và thực sự chả hiểu j cả