Cho các số thực dương x,y,z thỏa mãn xy+yz+zx>=x+y+z
Chứng minh rằng \(\frac{x^2}{\sqrt{x^3+8}}+\frac{y^2}{\sqrt{y^3+8}}+\frac{z^2}{\sqrt{z^3+8}}\ge1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(S=\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\)
\(=1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\)
=> 7S = \(7+\left(-1\right)+\left(-\frac{1}{7}\right)+...+\left(-\frac{1}{7}\right)^{2006}\)
Lấy 7S trừ S ta có :
7S - S = \(7+\left(-1\right)+\left(-\frac{1}{7}\right)+...+\left(-\frac{1}{7}\right)^{2006}-\left[1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\right]\)
6S = \(7-1-1+\left(\frac{1}{7}\right)^{2007}=5+\left(\frac{1}{7}\right)^{2007}\Rightarrow S=\frac{5+\left(\frac{1}{7}\right)^{2007}}{6}\)
Ta có: \(3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2=\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\)
\(\Rightarrow\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\) nên với \(x,y,z>0\) ta có:
\(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}\) áp dụng ta có:
\(\frac{1}{\sqrt{ab+a+2}}+\frac{1}{\sqrt{bc+b+2}}+\frac{1}{\sqrt{ca+c+2}}\le\sqrt{3\left(\frac{1}{ab+a+2}+\frac{1}{bc+b+2}+\frac{1}{ca+c+2}\right)}\)
Với: \(x,y>0\) ta có: \(x+y\ge2\sqrt{xy}\Rightarrow\left(x+y\right)^2\ge4xy\Rightarrow\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)
Áp dụng ta được:
\(\frac{1}{ab+a+2}=\frac{1}{ab+1+a+1}=\frac{1}{ab+abc+a+1}=\frac{1}{ab\left(c+1\right)+\left(a+1\right)}\)
\(\le\frac{1}{4}\left(\frac{1}{ab\left(c+1\right)}+\frac{1}{a+1}\right)=\frac{1}{4}\left(\frac{abc}{ab\left(c+1\right)}+\frac{1}{a+1}\right)=\frac{1}{4}\left(\frac{c}{c+1}+\frac{1}{a+1}\right)\)
Vậy ta có: \(\frac{1}{ab+a+2}\le\frac{1}{4}\left(\frac{c}{c+1}+\frac{1}{a+1}\right)\)
Tương tự như trên ta có: \(\frac{1}{bc+b+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{b+1}\right)\) và \(\frac{1}{ca+c+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{c+1}\right)\) nên:
\(\Rightarrow\sqrt{3\left(\frac{1}{ab+a+2}+\frac{1}{bc+b+2}+\frac{1}{ca+c+2}\right)}\)
\(\le\sqrt{3.\frac{1}{4}\left(\frac{c}{c+1}+\frac{1}{a+1}+\frac{a}{a+1}+\frac{1}{b+1}+\frac{b}{b+1}+\frac{1}{c+1}\right)}=\frac{3}{2}\)
Vậy \(\frac{1}{\sqrt{ab+a+2}}+\frac{1}{\sqrt{bc+b+2}}+\frac{1}{\sqrt{ca+c+2}}\le\frac{3}{2}\left(đpcm\right)\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
Đặt \(\left(a;b;c\right)=\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\). BĐT quy về:\(\Sigma_{cyc}\frac{\sqrt{yz}}{\sqrt{xy+xz+2yz}}\le\frac{3}{2}\)
Áp dụng liên hoàn BĐT Cô si:
\(VT=\Sigma_{cyc}\sqrt{\frac{yz}{\left(xy+yz\right)+\left(xz+yz\right)}}\le\Sigma_{cyc}\sqrt{\frac{yz}{4}\left(\frac{1}{xy+yz}+\frac{1}{xz+yz}\right)}\)
\(=\frac{1}{2}\Sigma_{cyc}\sqrt{1\left(\frac{yz}{xy+yz}+\frac{yz}{xz+yz}\right)}\le\frac{1}{4}\Sigma_{cyc}\left(1+\frac{yz}{xy+yz}+\frac{yz}{xz+yz}\right)=\frac{3}{2}\)
Hình tự vẽ nha <3
Vẽ \(AH\)cắt \(BC\)tại \(K\)
Ta có: \(AK\perp BC\)
Gọi \(S\)(Khác \(D\)) là giao điểm của 2 đường trong \(O_1;O_2\)
Xét đường tròn \(O_1\)có: \(\widehat{SDB}=\widehat{SMC}\)
Ta có: \(\widehat{SMC}=\widehat{SNA}\Rightarrow AMSN\)nội tiếp.
Mặt khác: \(\widehat{HMA}=\widehat{HNA}=90^0\Rightarrow AMHN\) nội tiếp
Vì vậy 5 điểm \(A,M,S,H,N\)cùng thuộc đường tròn.
\(\widehat{NSA}=\widehat{NHA}\)Mà \(\widehat{NHA}=\widehat{DBN}\Rightarrow\widehat{NSA}=\widehat{DBN}\)
Ta có: \(\widehat{NSA}+\widehat{DSN}=\widehat{DBN}+\widehat{DSN}=180^0\)
\(\Rightarrow A,D,S\)thằng hàng.
Ta lại có: \(\widehat{ASH}=\widehat{HMA}=90^0\Rightarrow HS\perp DA\)
Và: \(\widehat{PSD}=90^0\)(Góc nội tiếp chắn đường tròn)
\(\Rightarrow PS\perp DA\)
Và: \(\widehat{QSD}=90^0\)(Góc nội tiếp chắn đường tròn)
\(\Rightarrow QS\perp DA\)
Từ trên ta suy ra: Các đường thẳng \(SH;PS;QS\)trùng nhau.
\(\Rightarrow P,H,Q\)thằng hàng (đpcm)
12 phút = 12/60 (giờ)=0,2 (giờ)
Gọi vận tốc ban đầu của xe là \(x\)(km/h), vận tốc đi trên đoạn đường xấu là \(x-10\) (km/h). (ĐK x>10)
Đoạn đường xấu là 1/4 quãng đường AB và băng \(240:4=60\) (km).
Theo bài ra ta có: \(\frac{60}{x-10}-\frac{60}{x}=0,2\)
=> \(0,2x^2-2x-600=0\)
=> \(x=60\) hoặc \(x=-50\)(loại)
Vận tốc ban đầu là 60km, vận tốc trên đoạn đường xấu là 60-10 = 50km/h
\(1+5^x=2^y+5.2^z\)
+) Với \(x\inℕ^∗\)
Xét: VT = \(1+5^x\)chia 4 dư 2 và chia 5 dư 1
+) Với \(y,z\inℕ^∗\)
Xét VP = \(2^y+5.2^z\)
TH1: y , z > 1
=> VP = \(2^y+5.2^z\)chia hết cho 4
=> loại
TH2: y , z = 1
=> VP = 12 chia hết cho 4
=> loại
TH3: y = 1, z > 1
=> VP = \(2+5.2^z\)chia 5 dư 2
=> loại
TH4: y > 1, z = 1
=> Ta có phương trình: \(5^x=2^y+9\)
Với y = 2 thì \(5^x=13\)loại
Với y > 2. khi đó: \(2^y+9\) chia 8 dư 1 => \(5^x\)chia 8 dư 1 => x là số chẵn => Đặt x = 2k ( k là số tự nhiên >1)
Ta có phương trình:\(5^{2k}-9=2^y\)
<=> \(\left(5^k-3\right)\left(5^k+3\right)=2^y\)
Khi đó tồn tại hai số tự nhiên a, b sao cho: a + b = y và a > b để:
\(\hept{\begin{cases}5^k+3=2^a\\5^k-3=2^b\end{cases}}\)=> \(2^a-2^b=6\)(1)
Với : b > 2 => \(2^a-2^b⋮8\)loại
Với : b = 2 => \(2^a-4=6\)=> loại
Với b = 1 => \(2^a-2=6\)=> \(2^a=8=2^3\)=> a = 3
Với b = 0 => \(2^a-1=6\)loại
Vậy b = 1 và a = 3 là thỏa mãn (1)
=> y = a + b = 4
=> \(5^x=2^4+9=25=5^2\)
=> x = 2
Ta thử lại với x = 2; y = 4 ; z = 1 thấy thỏa mãn
Vậy: x =2 ; y = 4 ; z = 1.
Bạn ơi cái này mk chỉ ghi cách làm và ct thôi nha
đây dùng hàng đẳng thức (a-b)(a+b)=a^2-b^2
còn kia là công thức toán lớp 6
\(\frac{1}{\sqrt{3}+\sqrt{1}}=\frac{\sqrt{3}-\sqrt{1}}{\left(\sqrt{3}+\sqrt{1}\right)\left(\sqrt{3}-\sqrt{1}\right)}=\frac{\sqrt{3}-\sqrt{1}}{\sqrt{3^2}-\sqrt{1^2}}=\frac{1}{2}\left(\sqrt{3}-\sqrt{1}\right)\)
Tương tự:
\(\frac{1}{\sqrt{5}+\sqrt{3}}=\frac{1}{2}\left(\sqrt{5}-\sqrt{3}\right)\)
.....
\(\frac{1}{\sqrt{2019}+\sqrt{2017}}=\frac{1}{2}\left(\sqrt{2019}-\sqrt{2017}\right)\)
Cộng các vế với nhau ta được:
\(S=\frac{1}{2}\left(\sqrt{2019}-\sqrt{1}\right)=\frac{1}{2}\left(\sqrt{2019}-1\right)\)
Chúng ta có nhận xét: \(\left(2x-1\right)\left(5-x\right)=-2x^2+11x-5\)
ĐK: \(\hept{\begin{cases}2x-1\ge0\\5-x\ge0\end{cases}\Leftrightarrow}\frac{1}{2}\le x\le5\)(1)
Với những bài có nhận xét như trên. Thì hầu như chúng ta sẽ làm như sau:
Đăt \(\sqrt{2x-1}+\sqrt{5-x}=t\)( \(t\ge0\))
<=> \(2x-1+5-x+2\sqrt{-2x^2+11x-5}=t^2\)( bình phương hai vế )
<=> \(x+4+2\sqrt{-2x^2+11x-5}=t^2\)
<=> \(x+2\sqrt{-2x^2+11x-5}=t^2-4\)
<=> \(x-2+2\sqrt{-2x^2+11x-5}=t^2-6\)
Phương trình ban đầu trở thành:
\(t=t^2-6\)với \(t\ge0\)
<=> \(t^2-t-6=0\)
<=> \(\orbr{\begin{cases}t=3\\t=-2\left(loai\right)\end{cases}}\)
Với t = 3 ta có:
\(\sqrt{2x-1}+\sqrt{5-x}=3\)
<=> \(x+4+2\sqrt{\left(2x-1\right)\left(5-x\right)}=9\)
<=> \(2\sqrt{\left(2x-1\right)\left(5-x\right)}=5-x\)
<=> \(\orbr{\begin{cases}5-x=0\\2\sqrt{2x-1}=\sqrt{5-x}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=5\\4\left(2x-1\right)=5-x\end{cases}}\)
<=> \(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)( thỏa mãn đk (1))
Vậy:...
Tổng của nửa chu vi và chiều dài của hình chữ nhật là là: 30 x 2 = 60 ( m )
Nếu tăng chiều rộng lên 15m thì hình chữ nhật trở thành hình vuông, chiều dài hình chữ nhật trở thành cạnh của hình vuông và lớn hơn chiều rộng của hình chữ nhật là 15m
Khi đó: tổng của nửa chu vi và 1 cạnh của hình vuông là:
60 + 15 = 75 ( m)
Mà nửa chu vi của hình vuông gấp hai lần cạnh.
Ta có sơ đồ:
Tổng số phần là:
2 + 1 = 3 ( phần )
Mỗi phần có giá trị:
75 : 3 = 25 (m )
Cạnh của hình vuông là:
25 x 1 = 25 ( m)
Chiều dài của hình chữ nhật là 25 m
Chiều rộng của hình chữ nhật là:
25 - 15 = 10 (m)
Đáp số:...
Đoạn cuối của cô Nguyễn Linh Chi em có 1 cách biến đổi tương đương cũng khá ngắn gọn ạ
\(RHS\ge2\cdot\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)
Theo đánh giá của cô Nguyễn Linh Chi thì \(xy+yz+zx\ge x+y+z\ge3\)
Ta cần chứng minh:\(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\ge\frac{1}{2}\)
Thật vậy,BĐT tương đương với:
\(2\left(x+y+z\right)^2\ge x^2+y^2+z^2-x-y-z+18\)
\(\Leftrightarrow\left(x+y+z\right)^2+x+y+z-12\ge0\)
\(\Leftrightarrow\left(x+y+z+4\right)\left(x+y+z-3\right)\ge0\) ( luôn đúng với \(x+y+z\ge3\) )
=> đpcm
Áp dụng: \(AB\le\frac{\left(A+B\right)^2}{4}\)với mọi A, B
Ta có:
\(x^3+8=\left(x+2\right)\left(x^2-2x+4\right)\le\frac{\left(x+2+x^2-2x+4\right)^2}{4}\)
=> \(\sqrt{x^3+8}\le\frac{x^2-x+6}{2}\)
=> \(\frac{x^2}{\sqrt{x^3+8}}\ge\frac{2x^2}{x^2-x+6}\)
Tương tự
=> \(\frac{x^2}{\sqrt{x^3+8}}+\frac{y^2}{\sqrt{y^3+8}}+\frac{z^2}{\sqrt{z^3+8}}\)
\(\ge\frac{2x^2}{x^2-x+6}+\frac{2y^2}{y^2-y+6}+\frac{2z^2}{z^2-z+6}\)
\(=2\left(\frac{x^2}{x^2-x+6}+\frac{y^2}{y^2-y+6}+\frac{z^2}{z^2-z+6}\right)\)
\(\ge2\frac{\left(x+y+z\right)^2}{x^2-x+6+y^2-y+6+z^2-z+6}\)
\(=2\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)(1)
Ta có: \(x+y+z\le xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\) với mọi x, y, z
=> \(\left(x+y+z\right)^2-3\left(x+y+z\right)\ge0\)
=> \(\left(x+y+z\right)\left(x+y+z-3\right)\ge0\)
=> \(x+y+z\ge3\)với mọi x, y, z dương
Và \(x^2+y^2+z^2=\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\le\left(x+y+z\right)^2-2\left(x+y+z\right)\)
Do đó: \(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)
\(\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2-3\left(x+y+z\right)+18}\)
Đặt: x + y + z = t ( t\(\ge3\))
Xét hiệu: \(\frac{t^2}{t^2-3t+18}-\frac{1}{2}=\frac{t^2+3t-18}{t^2-3t+18}=\frac{\left(t-3\right)\left(t+6\right)}{\left(t-\frac{3}{2}\right)^2+\frac{63}{4}}\ge0\)với mọi t \(\ge3\)
Do đó: \(\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2-3\left(x+y+z\right)+18}\ge\frac{1}{2}\)(2)
Từ (1); (2)
=> \(\frac{x^2}{\sqrt{x^3+8}}+\frac{y^2}{\sqrt{y^3+8}}+\frac{z^2}{\sqrt{z^3+8}}\ge2.\frac{1}{2}=1\)
Dấu "=" xảy ra <=> x= y = z = 1