K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2020

Ta có :

\(b^2=\left(3+\sqrt{6+\sqrt{7+\sqrt{2}}}\right)\left(3-\sqrt{6+\sqrt{7+\sqrt{2}}}\right)\)

\(b^2=9-\left(6+\sqrt{7+\sqrt{2}}\right)\)

\(b^2=3-\sqrt{7+\sqrt{2}}\)

\(\Rightarrow b=\sqrt{3-\sqrt{7+\sqrt{2}}}\)

Tích ab :

\(ab=\sqrt{2+\sqrt{2}}.\sqrt{3+\sqrt{7+\sqrt{2}}}.\sqrt{3-\sqrt{7+\sqrt{2}}}\)

\(ab=\sqrt{2+\sqrt{2}}.\left(9-7-\sqrt{2}\right)\)

\(ab=\sqrt{2+\sqrt{2}}.\left(2-\sqrt{2}\right)\)

P/s : làm được thế này thui . Sai bỏ qua

3 tháng 9 2020

Ta có :

\(x\)và \(x^5\) cùng tính chẵn - lẻ 

\(y\)và \(y^3\) cùng tính chẵn - lẻ 

\(\left(x+y\right)\)và \(\left(x+y\right)^2\) cùng tính chẵn - lẻ

Vậy \(x^5+y^3-\left(x+y\right)^2\) và \(x+y-\left(x+y\right)\) cùng tính chẵn lẻ

Trong mọi trường hợp, \(x\) và \(y\) lẻ hay chẵn thì kết quả luôn là số chẵn \(\Rightarrow3z^3\) là số chẵn \(\Rightarrow z=2\) ( vì 2 là SNT chẵn duy nhất )

\(\Rightarrow x^5+y^3-\left(x+y\right)^2=3.2^3=24\)

Chỉ khi \(x=y=2\) thì phương trình hợp lí

Vậy \(x=y=z=2\)

20 tháng 8 2020

a) ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

\(A=\left(\frac{1}{\sqrt{x}+2}+\frac{1}{\sqrt{x}-2}\right).\frac{\sqrt{x}-2}{\sqrt{x}}\)

\(A=\frac{\sqrt{x}-2+\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}-2}{\sqrt{x}}\)

\(A=\frac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{2}{\sqrt{x}+1}\)

b) \(A>\frac{1}{2}\)

\(\Leftrightarrow\frac{2}{\sqrt{x}+1}>\frac{1}{2}\)

\(\Leftrightarrow\frac{2}{\sqrt{x}+1}-\frac{1}{2}>0\)

\(\Leftrightarrow\frac{4-\sqrt{x}-1}{2\left(\sqrt{x}+1\right)}>0\)

\(\Leftrightarrow\frac{3-\sqrt{x}}{2\sqrt{x}+2}>0\)

\(\Leftrightarrow3-\sqrt{x}>0\)\(2\sqrt{x}+2>0\)với mọi x lớn hơn hoặc bằng 0; x khác 4 )

\(\Leftrightarrow-\sqrt{x}>-3\)

\(\Leftrightarrow\sqrt{x}< 3\)

\(\Leftrightarrow x< 9\)

Vậy với x>9 ; \(x\ge0\); x khác 4 thì A>1/2

c) Ta có : \(B=\frac{7}{3}A\)

\(\Leftrightarrow B=\frac{14}{3\left(\sqrt{x}+2\right)}\)

\(\Leftrightarrow B=\frac{14}{3\sqrt{x}+6}\)

B là số nguyên

\(\Leftrightarrow3\sqrt{x}+6\inƯ\left(14\right)\)

Vì \(3\sqrt{x}+6>0\)với mọi \(\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

=> chỉ chọn giá trị dương

+) Bạn tự xét các trường hợp

Kết quả ra : \(\orbr{\begin{cases}x=\frac{1}{9}\\x=\frac{64}{9}\end{cases}}\)

Vậy ............

19 tháng 8 2020

\(\left(x-1\right)\sqrt{x^2+5}+x=x^2+1\)

\(\Leftrightarrow\left(x-1\right)\left(\sqrt{x^2+5}+1\right)=x^2\)(đk: \(x>1\))

\(\Leftrightarrow2\left(x-1\right)\left(\sqrt{x^2+5}+1\right)=2x^2\)

\(\Leftrightarrow\left[\left(x^2+5\right)-2\sqrt{x^2+5}\left(x-1\right)+\left(x-1\right)^2\right]-4=0\)

\(\Leftrightarrow\left(\sqrt{x^2+5}-x+1\right)^2-4=0\)

\(\Leftrightarrow\left(\sqrt{x^2+5}-x+3\right)\left(\sqrt{x^2+5}-x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2+5}-x+3=0\left(\cdot\right)\\\sqrt{x^2+5}-x-1=0\left(\cdot\cdot\right)\end{cases}}\)

Tới đây thì giải hai phương trình (*) và (**) rồi nhận nghiệm thỏa mãn là xong

20 tháng 8 2020

Giải thích các bước giải :

Cách 1 : 

Có một mảnh giấy , muốn chia thành hình vuông thì cắt 1cm

Cách 2 :

Ta phải chia mỗi hình vuông có cạnh là 2cm

Vậy có 2 cách để chia