Tìm GTNN của các biểu thức sau:
F=\(\left|2X-2\right|+\left|2X-2003\right|\)
G=\(\left|2X-3\right|+\frac{1}{2}\left|4X-1\right|\)
H=\(\left|X-2018\right|+\left|X-2019\right|+\left|X-2020\right|\)
CÁC BẠN GIÚP MÌNH VỚI !!!!!!!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x>0\)
Ta có: \(P\sqrt{x}=\left(\sqrt{x}+1\right)^2\)
\(\Leftrightarrow\left(\sqrt{x}+1\right)^2=6\sqrt{x}-3-\sqrt{x-4}\)
\(\Leftrightarrow x+2\sqrt{x}+1=6\sqrt{x}-3-\sqrt{x-4}\)
\(\Leftrightarrow x-4\sqrt{x}+4+\sqrt{x-4}=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+\sqrt{x-4}=0\)
Vì \(\left(\sqrt{x}-2\right)^2\ge0;\sqrt{x-4}\ge0\forall x\)
\(\Rightarrow\left(\sqrt{x}-2\right)^2+\sqrt{x-4}\ge0\forall x\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{x}-2=0\\\sqrt{x-4}=0\end{cases}}\Leftrightarrow x=4\) ( tm )
Vậy...
Ta có:
\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{25}\)
\(=\left(\frac{1}{11}+\frac{1}{12}\right)+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{16}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+...+\frac{1}{25}\right)\)
Mà:
\(\frac{1}{11}+\frac{1}{12}>\frac{1}{12}+\frac{1}{12}=\frac{2}{12}=\frac{10}{60}\)
\(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}>\frac{1}{15}+\frac{1}{15}+\frac{1}{15}=\frac{3}{15}=\frac{12}{60}\)
\(\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}=\frac{5}{20}=\frac{15}{60}\)
\(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+\frac{1}{24}+\frac{1}{25}>\frac{1}{25}+\frac{1}{25}+\frac{1}{25}+\frac{1}{25}+\frac{1}{25}=\frac{5}{25}=\frac{12}{60}\)
\(\Rightarrow\left(\frac{1}{11}+\frac{1}{12}\right)+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{16}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+...+\frac{1}{25}\right)>\frac{10}{60}+\frac{12}{60}+\frac{15}{60}+\frac{12}{60}=\frac{49}{60}\)\(\Rightarrow\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{25}>\frac{49}{60}\left(đpcm\right)\)
\(\sqrt{x^2+2014}-x=\sqrt{y^2+2014}+y\Leftrightarrow x+y=\sqrt{x^2+2014}-\sqrt{y^2+2014}\)\(\Leftrightarrow x+y=\frac{x^2-y^2}{\sqrt{x^2+2014}+\sqrt{y^2+2014}}\)
\(\Leftrightarrow\left(x+y\right)\left(1-\frac{x-y}{\sqrt{x^2+2014}+\sqrt{y^2+2014}}\right)=0\)\(\Leftrightarrow\left(x+y\right)\frac{\sqrt{x^2+2014}-x+\sqrt{y^2+2014}+y}{\sqrt{x^2+2014}+\sqrt{y^2+2014}}=0\)(*)
Ta có: \(\hept{\begin{cases}\sqrt{x^2+2014}>\sqrt{x^2}=\left|x\right|\ge x\\\sqrt{y^2+2014}>\sqrt{y^2}=\left|y\right|\ge-y\end{cases}}\Rightarrow\hept{\begin{cases}\sqrt{x^2+2014}-x>0\\\sqrt{y^2+2014}+y>0\end{cases}}\)nên \(\frac{\sqrt{x^2+2014}-x+\sqrt{y^2+2014}+y}{\sqrt{x^2+2014}+\sqrt{y^2+2014}}>0\)(**)
Từ (*) và (**) suy ra x + y = 0
Vậy x + y = 0
ĐỀ BÀI THIẾU \(\widehat{BAC}=105^0\). Hình vẽ trong TKHĐ
Qua A kẻ đường thẳng vuông góc với AC cắt BC tại M. Tại E kẻ đường thẳng song song với AH cắt AC tại D.
Xét tam giác ABE có AB=BE=1 mà ^ABE=600 nên tam giác ABE đều. Khi đó
\(AH=AB\cdot\sin\widehat{ABH}=\sin60^0=\frac{\sqrt{3}}{2}\)
Dễ thấy \(\Delta MAE=\Delta ADE\left(g.c.g\right)\Rightarrow AD=AM\Rightarrow\Delta\)AMC vuông tại A có đường cao AH theo hệ thức lượng:
\(\frac{1}{AC^2}+\frac{1}{AM^2}=\frac{1}{AH^2}\Rightarrow\frac{1}{AC^2}+\frac{1}{AD^2}=\frac{1}{\left(\frac{\sqrt{3}}{2}\right)^2}=\frac{4}{3}\)
Gọi F đối xứng với C qua A. Khi đó tam giác FBC vuông tại F.
Theo hệ thức lượng thì \(BC^2=HC\cdot CF\). Mặt khác \(BC^2=2AB\cdot HC\)
Đến đây dễ rồi nha, làm tiếp thì chán quá :(
.Vậy tập hợp A có 19 phần tử và các phần tử đó là 4000, 3100, 3010, 3001, 1300, 1030, 1003, 2200, 2020, 2002, 2110, 2101, 2011, 1201, 1210, 1120, 1102, 1021, 1012. Xin lỗi nha, câu trả lời kia mình ghi phần này rồi nhưng không hiểu sao ko hiển thị
Ta có thể biểu diễn tổng 4 dưới dạng các dãy số hạng sau:
\(4\)
\(3+1\)
\(2+2\)
\(2+1+1\)
\(1+1+1+1\)
Từ dãy số hạng \(4\) có thể tìm ra được số \(4000\) thỏa mãn yêu cầu đề bài.
Từ dãy số hạng \(3+1\) có thể tìm ra được các số \(3100,3010,3001,1300,1030,1003\) thỏa mãn yêu cầu đề bài.
Từ dãy số hạng \(2+2\) có thể tìm ra được các số \(2200,2020,2002\) thỏa mãn yêu cầu đề bài.
Từ dãy số hạng \(2+1+1\) có thể tìm ra được các số \(2110,2101,2011,1201,1210,1120,1102,1021,1012\) thỏa mãn yêu cầu đề bài.
Từ dãy số hạng \(1+1+1+1\) có thể tìm ra được các số \(1111\) thỏa mãn yêu cầu đề bài.Vậy tập hợp A có 20 phần tử và các phần tử đó là \(4000,3100,3010,3001,1300,1030,1003,2200,2020,2002,2110,2101,2011,1201,1210,1120,1102,1021,1012,1111\) hay \(A\in\left\{4000,3100,3010,3001,1300,1030,1003,2200,2020,2002,2110,2101,2011,1201,1210,1120,1102,1021,1012,1111\right\}\)Đặt \(2x+y-xy=a;xy=b\)
hpt \(\Leftrightarrow\hept{\begin{cases}\frac{b}{2}+\frac{5}{a}=5\\a+\frac{10}{b}=4\left(1\right)\end{cases}}\)\(\Rightarrow\hept{\begin{cases}ab+10=10a\\ab+10=4b\end{cases}}\)
\(\Leftrightarrow10a=4b\Leftrightarrow a=\frac{2b}{5}\)
\(\left(1\right)\Leftrightarrow\frac{2b}{5}+\frac{10}{b}=4\Leftrightarrow b^2+25=10b\Leftrightarrow\left(b-5\right)^2=0\Leftrightarrow b=5\)
\(\Rightarrow a=2\)
Từ đó ta có hệ:
\(\hept{\begin{cases}2x+y-xy=2\\xy=5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}2x+y=7\\xy=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=7-2x\\x\left(7-2x\right)=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(2x-5\right)\left(x-1\right)=0\\y=7-2x\end{cases}}\)
TH1: \(\hept{\begin{cases}x=1\\y=5\end{cases}}\)
TH2: \(\hept{\begin{cases}x=\frac{5}{2}\\y=2\end{cases}}\)
Vậy...
F = | 2x - 2 | + | 2x - 2003 |
F = | 2x - 2 | + | -( 2x - 2003 ) |
F = | 2x - 2 | + | 2003 - 2x |
Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :
F = | 2x - 2 | + | 2003 - 2x | ≥ | 2x - 2 + 2003 - 2x | = | 2001 | = 2001
Đẳng thức xảy ra khi ab ≥ 0
=> ( 2x - 2 )( 2003 - 2x ) ≥ 0
Xét hai trường hợp :
1/ \(\hept{\begin{cases}2x-2\ge0\\2003-2x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}2x\ge2\\-2x\ge-2003\end{cases}}\Rightarrow\hept{\begin{cases}x\ge1\\x\le\frac{2003}{2}\end{cases}\Rightarrow}1\le x\le\frac{2003}{2}\)
2/ \(\hept{\begin{cases}2x-2\le0\\2003-2x\le0\end{cases}}\Rightarrow\hept{\begin{cases}2x\le2\\-2x\le-2003\end{cases}}\Rightarrow\hept{\begin{cases}x\le1\\x\ge\frac{2003}{2}\end{cases}}\)( loại )
Vậy MinF = 2001 <=> \(1\le x\le\frac{2003}{2}\)
G = | 2x - 3 | + 1/2| 4x - 1 |
G = | 2x - 3 | + | 2x - 1/2 |
G = | -( 2x - 3 ) | + | 2x - 1/2 |
G = | 3 - 2x | + | 2x - 1/2 |
Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :
G = | 3 - 2x | + | 2x - 1/2 | ≥ | 3 - 2x + 2x - 1/2 | = | 5/2 | = 5/2
Đẳng thức xảy ra khi ab ≥ 0
=> ( 3 - 2x )( 2x - 1/2 ) ≥ 0
Xét 2 trường hợp :
1/ \(\hept{\begin{cases}3-2x\ge0\\2x-\frac{1}{2}\ge0\end{cases}}\Rightarrow\hept{\begin{cases}-2x\ge-3\\2x\ge\frac{1}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x\le\frac{3}{2}\\x\ge\frac{1}{4}\end{cases}}\Rightarrow\frac{1}{4}\le x\le\frac{3}{2}\)
2/ \(\hept{\begin{cases}3-2x\le0\\2x-\frac{1}{2}\le0\end{cases}}\Rightarrow\hept{\begin{cases}-2x\le-3\\2x\le\frac{1}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x\ge\frac{3}{2}\\x\le\frac{1}{4}\end{cases}}\)( loại )
=> MinG = 5/2 <=> \(\frac{1}{4}\le x\le\frac{3}{2}\)
H = | x - 2018 | + | x - 2019 | + | x - 2020 |
H = | x - 2019 | + [ | x - 2018 | + | x - 2020 | ]
H = | x - 2019 | + [ x - 2018 | + | -( x - 2020 ) | ]
H = | x - 2019 | + [ | x - 2018 | + | 2020 - x | ]
Ta có : | x - 2019 | ≥ 0 ∀ x
| x - 2018 | + | 2020 - x | ≥ | x - 2018 + 2020 - x | = | 2 | = 2 ( BĐT | a | + | b | ≥ | a + b | )
=> | x - 2019 | + [ | x - 2018 | + | 2020 - x | ] ≥ 2
Đẳng thức xảy ra <=> \(\hept{\begin{cases}\left|x-2019\right|=0\\\left(x-2018\right)\left(2020-x\right)\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2019\\2018\le x\le2020\end{cases}}\)
=> x = 2019
=> MinH = 2 <=> x = 2019