cho một hình tam giác ABC có diện tích 90 mét vuông . Nếu kéo dài đáy BC ( về phía B ) một đoạn 4m thì diện tích tăng thêm 24 mét vuông . Tính độ dài cạnh đáy BC
giúp mình nhé
cảm ơn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = ( x + y )( x + 2y )( x + 3y )( x + 4y ) + y4
= [ ( x + y )( x + 4y ) ][ ( x + 2y )( x + 3y ) ] + y4
= ( x2 + 5xy + 4y2 )( x2 + 5xy + 6y2 ) + y4 (1)
Đặt t = x2 + 5xy + 5y2
(1) <=> ( t - y2 )( t + y2 ) + y4
= t2 - y4 + y4
= t2 = ( x2 + 5xy + 5y2 )2
Vì x, y nguyên => x2 nguyên ; 5xy nguyên ; 5y2 nguyên
=> x2 + 5xy + 5y2 nguyên
=> ( x2 + 5xy + 5y2 )2 là một số chính phương
=> đpcm
A = ( x + y )( x + 2y )( x + 3y )( x + 4y ) + y4
=> A = ( x2 + 5xy + 4y2 ) ( x2 + 5xy + 6y2 ) + y4
Đặt a = x2 + 5xy + 5y2 , pt trở thành :
A = ( a - y2 ) ( a + y2 ) + y4
=> A = t2 - y4 + y4 = t2 = ( x2 + 5xy + 5y2 )2 là SCP
Vậy A là SCP
\(9^x:3^{x+9}=27\)
\(9^x=27\cdot3^{x+9}\)
\(\left(3^2\right)^x=3^3\cdot3^{x+9}\)
\(3^{2x}=3^{x+12}\)
\(\Rightarrow2x=x+12\)
\(2x-x=12\)
\(x=12\)
\(4^{x+y}:2^{5y}=32\)
\(4^{12+y}=32\cdot2^{5y}\)
\(\left(2^2\right)^{12+y}=2^5\cdot2^{5y}\)
\(2^{24+2y}=2^{5+5y}\)
\(24+2y=5+5y\)
\(24-5=5y-2y\)
\(3y=19\)
\(y=19:3\)
\(y=\frac{19}{3}\)
Vậy \(x=12;y=\frac{19}{3}\)
Cho hỏi : có phải là 20 học sinh chỉ thích bóng đá, 17 học sinh chỉ thích bơi với 36 học sinh chỉ thích bóng chuyền không vậy?
Định lí Talet đảo: \(\frac{AD}{AB}=\frac{AE}{AC}\Rightarrow DE//BC\)
Mà \(AH\perp BC\)nên \(AH\perp DE\)
Mà \(\Delta ADE\)cân tại \(A\)nên \(AH\)cũng là đường trung trực của \(DE\)
\(\Rightarrow D,E\)đối xứng nhau qua \(AH\)
x là một số nào đó trong dãy số tuwh nhiên và y cũng như vậy
bạn ghi câu trên vào vở đi mình không nói dối đâu thật đó mình học rồi nên mình biết
Theo đề bài: \(a+b+c=0\Rightarrow a=-\left(b+c\right)\Rightarrow a^2=\text{[}-\left(b+c\right)^2\text{]}\)
do đó \(a^2=b^2+c^2+2bc\Rightarrow a^2-b^2-c^2=2bc\left(1\right)\)
Bình phương 2 về của (1) ta được:
\(a^4+b^4+c^4=2a^2b^2-2a^2c^2+2b^2c^2=4b^2c^2\)
\(\Rightarrow a^4+b^4+c^4=2a^2b^2+2a^2c^2+2b^2c^2\)
\(\Rightarrow2\left(a^4+b^4+c^4\right)==\left(a^2+b^2+c^2\right)^2\)
Vì \(a^2+b^2+c^2=1\Rightarrow2\left(a^4+b^4+c^4\right)=1\Rightarrow a^4+b^4+c^4=\frac{1}{2}\)
1) Ta có: \(\left|9y-1\right|+\left(2x+3\right)^2=0\)
Mà \(\hept{\begin{cases}\left|9y-1\right|\ge0\\\left(2x+3\right)^2\ge0\end{cases}}\left(\forall x,y\right)\)
=> \(\left|9y-1\right|+\left(2x+3\right)^2\ge0\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left|9y-1\right|=0\\\left(2x+3\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}9y-1=0\\2x+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{1}{9}\end{cases}}\)
Vậy \(\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{1}{9}\end{cases}}\)
2)
a) Ta có: \(\left[\left(-\frac{1}{3}\right)^7\right]^4=\left(\frac{1}{3}\right)^{28}=\frac{1}{3^{28}}\)
và \(\left[\left(-\frac{1}{2}\right)^{14}\right]^2=\left(\frac{1}{2}\right)^{28}=\frac{1}{2^{28}}\)
Vì \(\frac{1}{3^{28}}< \frac{1}{2^{28}}\Rightarrow\left[\left(-\frac{1}{3}\right)^7\right]^4< \left[\left(-\frac{1}{2}\right)^{14}\right]^2\)
b) Ta có: \(\left(-\frac{2}{3}\right)^{12}=\left[\left(-\frac{2}{3}\right)^2\right]^6=\left(\frac{4}{9}\right)^6\)
Ta thấy \(0< \frac{4}{9}< 1\)\(\Rightarrow\left(\frac{4}{9}\right)^6>\left(\frac{4}{9}\right)^7\)
\(\Rightarrow\left(-\frac{2}{3}\right)^{12}>\left(\frac{4}{9}\right)^7\)
Xét tg ABD và tg ABC có chung đường cao hạ từ A xuống BC nên
\(\frac{S_{ABD}}{S_{ABC}}=\frac{BD}{BC}=\frac{24}{90}=\frac{4}{BC}=\frac{12}{45}\Rightarrow BC=\frac{45x4}{12}=15cm\)
làm cụ thể hơn cho mình xem đi có lời giải nha