cho x;y là nghiệm của phương trình x2y+2xy-4x+y=0 tìm giá trị lớn nhất của y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cách 1:CM\(\frac{1}{\left(\sqrt{n}+\sqrt{n+1}\right)}=\sqrt{n+1}-\sqrt{n}\) (Nhân chéo lên ta thấy đpcm)
áp dụng cho S ta được:
=>S = \(\sqrt{2}-\sqrt{2}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\)
S = \(\sqrt{100}-\sqrt{1}\)
S = 10 - 1 = 9 = 32 là SCP
\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{2010^2-2009^2}{2009^2.2010^2}\)
\(=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{2009^2}-\frac{1}{2010^2}=1-\frac{1}{2010^2}\)
\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{2010^2-2009^2}{2009^2.2010^2}\)
\(=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{2009^2}-\frac{1}{2010^2}=1-\frac{1}{2010^2}\)
1, gọi ptđt có dạng y=ax+b có hệ số góc =k ta có pt dạng như sau: y=kx+b. ma theo đê ptđt d đi qua M nên tọa độ diểm M thỏa mãn pt: -2=k+b suy ra b=-2-k. vạy ptđt d là:y=kx-2-k
Còn câu 2,3 t đang nghĩ
ĐK:\(\sqrt{x+2\sqrt{x-1}}=\sqrt{x-1+2\sqrt{x-1}+1}=\sqrt{\left(\sqrt{x-1}+1\right)^2}=\left|\sqrt{x-1}+1\right|\)
Suy ra : ĐK là x -1>0 suy ra x>1
Trường hợp mẫu số của phân thức 2 cũng tương tự tìm được ĐK x>1
Ta có \(M=\frac{1}{\sqrt{x-1}+1}-\frac{1}{\sqrt{x-1}-1}\)
\(M=\frac{\sqrt{x-1}-1-\sqrt{x-1}-1}{\left(\sqrt{x-1}+1\right)\left(\sqrt{x-1}-1\right)}\)
\(M=\frac{-2}{x-1-1}=\frac{-2}{x-2}\)
Tới đây rồi thì tìm giá trị nguyên thì giống với lớp 6,7 đó tự tìm thì chắc ai cũng tìm được
Cho các số thực a,b,c,x,y thỏa mãn ax−by=√3.
Tìm GTNN của F=a2+b2+x2+y2+bx+ay
Lời giải:
Sử dụng giả thiết ax−by=√3 ta có:
(a2+b2)(x2+y2)=(ax+by)2+(ax−by)2=(ax+by)2+3
Áp dụng bất đẳng thức Cauchy , suy ra:
a2+b2=x2+y2=(a2+b2)+(x2+y2)≥2√(a2+b2)(x2+y2)=2√(ax+by)2+3
Do đó, ta đưa về bài toán tìm GTNN của: 2√x2+3+x trong đó x=ax+by
Ta có:
(2√x2+3+x)2=4(x2+3)+4x√x2+3+x2=(x2+3)+4x√x2+3+4x2+9=(√x2+3+2x)2+9≥9
⇒2√x2+3+x≥3
Vậy MinT=3
Chịu thoy
Lớp 9 thì mk không làm được
Ai làm được thì giúp bạn Yuu nha
3)PT x3+y3+z3=nx2y2z2x3+y3+z3=nx2y2z2 (*)
Không mất tỉnh tổng quát . Giả sử x≥y≥zx≥y≥z
Xét x=1x=1 suy ra y=z=1y=z=1 và n=3n=3
Bây giờ ta xét x≥2x≥2
Như vậy thì theo phương trình (∗)(∗) thì
x3+y3+z3≥(xyz)2x3+y3+z3≥(xyz)2 . Chia cả 22 vế cho x3x3 ta được :
y3+z3x3≥(yz)2x−1y3+z3x3≥(yz)2x−1 (2)
Mà y3+z3x3≤2y3+z3x3≤2
Suy ra x≥(yz)23x≥(yz)23
Mà ta lại có x2|(y3+z3)x2|(y3+z3) nên 2y3≥y3+z3≥x22y3≥y3+z3≥x2
Từ đó ta được y4z49≤x2≤2y3y4z49≤x2≤2y3
Suy ra yz4≤18⇔z≤4√18yz4≤18⇔z≤184 từ đó ta có z<2z<2
Suy ra z=1z=1
Thế vào (2) ta có : y2x−1≤y3+1x3≤1+1x3y2x−1≤y3+1x3≤1+1x3
Suy ra y2≤2x+1x2≤2x+14y2≤2x+1x2≤2x+14
Suy ra 2x≥y2−14>y22x≥y2−14>y2 suy ra x≥y22x≥y22 (3)
Mà y3+z3≥x2y3+z3≥x2 suy ra y3+1≥x2y3+1≥x2
Lại từ (3) ta có x2≥y44x2≥y44
Từ đó suy ra y3+1≥x2≥y44y3+1≥x2≥y44
(2x)32≥y3(2x)32≥y3
Ta có bất phương trình (2x)32+1≥x3(2x)32+1≥x3
Suy ra x≤2x≤2
Đến đây ta sử dụng bất phương trình x≥y22x≥y22 rồi tìm ra nn
Cho \(\left(x+\sqrt{x^2+3}\right)\left(y+\sqrt{y^2+3}\right)=3\)
Tính giá trị của biểu thức \(E=x+y\)
Nhân cả 2 vế của pt ban đầu với \(x-\sqrt{x^2+3}\) được
\(y+\sqrt{y^2+3}=\sqrt{x^2+3}-x\)
\(\Rightarrow x+y=\sqrt{x^2+3}-\sqrt{y^2+3}\) (1)
Tương tự nhân cả 2 vế của pt ban đầu với \(y-\sqrt{y^2+3}\) được
\(x+y=\sqrt{y^2+3}-\sqrt{x^2+3}\) (2)
từ (1) và (2) ta có:\(2\left(x+y\right)=0\)
=>x+y=0
=>E=0
Với x,y dương thỏa mãn x+y=1,áp dụng BĐT AM-GM có:
1=x+y\(\ge\)\(2\sqrt{xy}\)
=>xy\(\le\)1/4,(*)
Ta Có:
A=\(\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{1-2xy}+\frac{1}{xy}\)
Theo (*)=>\(1-2xy\le\frac{1}{2}\ge\frac{1}{1-2xy}\ge2\)
và \(\frac{1}{xy}\ge4\)
=> A\(\ge\)2+4=6
Dấu "=" xảy ra <=>x=y=\(\frac{1}{2}\)
vậy Amin=6 khi x=y=\(\frac{1}{2}\)
Viết lại:
\(yx^2+2x\left(y-2\right)+y=0\)
Để phương trình có nghiệm thì \(\Delta'\ge0\)
\(\Rightarrow\left(y-2\right)^2-y^2\ge0\Leftrightarrow-4y+4\ge0\Leftrightarrow y\le1\)
Vậy giá trị lớn nhất của y là 1
\(pt\Leftrightarrow x^2y+2\left(y-2\right)x+y=0\)(*)
Nếu y=0 từ (*) => \(-4x=0\Rightarrow x=0\)
Nếu y\(\ne\)0 thì từ (*) có nghiệm theo x khi
\(\Delta'=\left(y-2\right)^2-y^2\ge0\Leftrightarrow4-4y\ge0\Leftrightarrow y\le1\)
Vậy y đạt GTLN=1 khi (*) có nghiệm kép
\(x_1=x_2=\frac{2-y}{y}=\frac{2-1}{1}=1\)