K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2016

Viết lại: 

\(yx^2+2x\left(y-2\right)+y=0\)

Để phương trình có nghiệm thì \(\Delta'\ge0\)

\(\Rightarrow\left(y-2\right)^2-y^2\ge0\Leftrightarrow-4y+4\ge0\Leftrightarrow y\le1\)

Vậy giá trị lớn nhất của y là 1

20 tháng 5 2016

\(pt\Leftrightarrow x^2y+2\left(y-2\right)x+y=0\)(*)

Nếu y=0 từ (*) => \(-4x=0\Rightarrow x=0\)

Nếu y\(\ne\)0 thì từ (*) có nghiệm theo x khi

\(\Delta'=\left(y-2\right)^2-y^2\ge0\Leftrightarrow4-4y\ge0\Leftrightarrow y\le1\)

Vậy y đạt GTLN=1 khi (*) có nghiệm kép

\(x_1=x_2=\frac{2-y}{y}=\frac{2-1}{1}=1\)

20 tháng 5 2016

cách 1:CM\(\frac{1}{\left(\sqrt{n}+\sqrt{n+1}\right)}=\sqrt{n+1}-\sqrt{n}\) (Nhân chéo lên ta thấy đpcm) 

áp dụng cho S ta được:

=>S = \(\sqrt{2}-\sqrt{2}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\)

S = \(\sqrt{100}-\sqrt{1}\)

S = 10 - 1 = 9 = 32 là SCP

20 tháng 5 2016

cách 2 mình quên mất rùi sr

20 tháng 5 2016

\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{2010^2-2009^2}{2009^2.2010^2}\)

\(=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{2009^2}-\frac{1}{2010^2}=1-\frac{1}{2010^2}\)

20 tháng 5 2016

\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{2010^2-2009^2}{2009^2.2010^2}\)

\(=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{2009^2}-\frac{1}{2010^2}=1-\frac{1}{2010^2}\)

19 tháng 5 2016

1, gọi ptđt có dạng y=ax+b có hệ số góc =k ta có pt dạng như sau: y=kx+b. ma theo đê ptđt d đi qua M nên tọa độ diểm M thỏa mãn pt: -2=k+b suy ra b=-2-k. vạy ptđt d là:y=kx-2-k

Còn câu 2,3 t đang nghĩ

19 tháng 5 2016

ĐK:\(\sqrt{x+2\sqrt{x-1}}=\sqrt{x-1+2\sqrt{x-1}+1}=\sqrt{\left(\sqrt{x-1}+1\right)^2}=\left|\sqrt{x-1}+1\right|\)

Suy ra : ĐK là x -1>0 suy ra x>1

Trường hợp mẫu số của phân thức 2 cũng tương tự tìm được ĐK x>1

Ta có \(M=\frac{1}{\sqrt{x-1}+1}-\frac{1}{\sqrt{x-1}-1}\)

\(M=\frac{\sqrt{x-1}-1-\sqrt{x-1}-1}{\left(\sqrt{x-1}+1\right)\left(\sqrt{x-1}-1\right)}\)

\(M=\frac{-2}{x-1-1}=\frac{-2}{x-2}\)

Tới đây rồi thì tìm giá trị nguyên thì giống với lớp 6,7 đó tự tìm thì chắc ai cũng tìm được

19 tháng 5 2016

Uầy pạn ơi khó thế

19 tháng 5 2016

Cho các số thực a,b,c,x,y thỏa mãn ax−by=√3.

Tìm GTNN của F=a2+b2+x2+y2+bx+ay

Lời giải:

Sử dụng giả thiết ax−by=√3 ta có:

(a2+b2)(x2+y2)=(ax+by)2+(ax−by)2=(ax+by)2+3

Áp dụng bất đẳng thức Cauchy , suy ra:

a2+b2=x2+y2=(a2+b2)+(x2+y2)≥2√(a2+b2)(x2+y2)=2√(ax+by)2+3

Do đó, ta đưa về bài toán tìm GTNN của: 2√x2+3+x trong đó x=ax+by

Ta có:

(2√x2+3+x)2=4(x2+3)+4x√x2+3+x2=(x2+3)+4x√x2+3+4x2+9=(√x2+3+2x)2+9≥9

⇒2√x2+3+x≥3

Vậy MinT=3

19 tháng 5 2016

1 chắc luôn

18 tháng 5 2016

Chịu thoy

Lớp 9 thì mk không làm được

Ai làm được thì giúp bạn Yuu nha

18 tháng 5 2016

3)PT x3+y3+z3=nx2y2z2x3+y3+z3=nx2y2z2 (*)
Không mất tỉnh tổng quát . Giả sử x≥y≥zx≥y≥z 
Xét x=1x=1 suy ra y=z=1y=z=1 và n=3n=3  
Bây giờ ta xét x≥2x≥2 
Như vậy thì theo phương trình (∗)(∗) thì 
x3+y3+z3≥(xyz)2x3+y3+z3≥(xyz)2 . Chia cả 22 vế cho x3x3 ta được : 
y3+z3x3≥(yz)2x−1y3+z3x3≥(yz)2x−1 (2)
Mà y3+z3x3≤2y3+z3x3≤2 
Suy ra x≥(yz)23x≥(yz)23 
Mà ta lại có x2|(y3+z3)x2|(y3+z3) nên 2y3≥y3+z3≥x22y3≥y3+z3≥x2 
Từ đó ta được y4z49≤x2≤2y3y4z49≤x2≤2y3
Suy ra yz4≤18⇔z≤4√18yz4≤18⇔z≤184 từ đó ta có z<2z<2 
Suy ra z=1z=1 
Thế vào (2) ta có : y2x−1≤y3+1x3≤1+1x3y2x−1≤y3+1x3≤1+1x3 
Suy ra y2≤2x+1x2≤2x+14y2≤2x+1x2≤2x+14  
Suy ra 2x≥y2−14>y22x≥y2−14>y2 suy ra x≥y22x≥y22 (3)
Mà y3+z3≥x2y3+z3≥x2 suy ra y3+1≥x2y3+1≥x2
Lại từ (3) ta có x2≥y44x2≥y44 
Từ đó suy ra y3+1≥x2≥y44y3+1≥x2≥y44 
(2x)32≥y3(2x)32≥y3
Ta có bất phương trình (2x)32+1≥x3(2x)32+1≥x3 
Suy ra x≤2x≤2 
Đến đây ta sử dụng bất phương trình x≥y22x≥y22 rồi tìm ra nn 

18 tháng 5 2016

 Nhân cả 2 vế của pt ban đầu với \(x-\sqrt{x^2+3}\) được

\(y+\sqrt{y^2+3}=\sqrt{x^2+3}-x\)

\(\Rightarrow x+y=\sqrt{x^2+3}-\sqrt{y^2+3}\) (1)

Tương tự nhân cả 2 vế của pt ban đầu với \(y-\sqrt{y^2+3}\) được 

\(x+y=\sqrt{y^2+3}-\sqrt{x^2+3}\) (2)

từ (1) và (2) ta có:\(2\left(x+y\right)=0\)

=>x+y=0

=>E=0

18 tháng 5 2016

Có ai ko giúp giùm mk đi

18 tháng 5 2016

 Với x,y dương thỏa mãn x+y=1,áp dụng BĐT AM-GM có: 

1=x+y\(\ge\)\(2\sqrt{xy}\)

=>xy\(\le\)1/4,(*) 

Ta Có: 

A=\(\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{1-2xy}+\frac{1}{xy}\) 

Theo (*)=>\(1-2xy\le\frac{1}{2}\ge\frac{1}{1-2xy}\ge2\)

và \(\frac{1}{xy}\ge4\)

=> A\(\ge\)2+4=6 

Dấu "=" xảy ra <=>x=y=\(\frac{1}{2}\)

vậy Amin=6 khi x=y=\(\frac{1}{2}\)

18 tháng 5 2016

sửa lại chút