Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Đề kiểm tra giữa học kì I (đề số 2) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Mệnh đề phủ định của "20 là số hợp số" là
Trong các câu sau, câu nào không là mệnh đề?
Sử dụng các kí hiệu đoạn, khoảng, nửa khoảng để viết tập hợp K={x∈R∣x∣≤3} ta có
Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?
Điểm A(−1;3) là điểm không thuộc miền nghiệm của bất phương trình nào sau đây?
Giá trị của biểu thức A=sin215∘+sin275∘+cos120∘ là
Cho tam giác ABC với BC=7 cm, AC=9 cm, AB=4 cm. Giá trị cosA bằng
Mệnh đề phủ định của "Hà Nội là thủ đô của nước Việt Nam" là
Cho ba tập hợp A=(−∞;0], B=(1;+∞) và C=[0;1). Khi đó (A∪B)∩C bằng
Cho A={0;1;2;3;4},B={2;3;4;5;6}. Tập hợp (A\B)∪(B\A) bằng
Phần không tô màu là hình vẽ biểu diễn miền nghiệm của hệ bất phương trình nào dưới đây?
Miền nghiệm của bất phương trình sau 3x−2y+1≥0 là phần tô màu (bao gồm cả đường thẳng) trong hình vẽ nào dưới đây?
Cho A là tập hợp các học sinh lớp 10 đang học ở trường X và B là tập hợp các học sinh đang học môn Tiếng Anh của trường X.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) A∩B là tập hợp các học sinh lớp 10 học môn Tiếng Anh ở trường X. |
|
b) A\B là tập hợp những học sinh lớp 10 và không học Tiếng Anh ở trường X. |
|
c) A∪B là tập hợp các học sinh lớp 10 và học sinh học môn Tiếng Anh ở trường X. |
|
d) B\A là tập hợp các học sinh học lớp 10 ở trường X nhưng không học môn Tiếng Anh. |
|
Một công ty viễn thông tính phí 1 000 đồng mỗi phút gọi nội mạng và 2 000 đồng mỗi phút gọi ngoại mạng. Gọi x và y lần lượt là số phút gọi nội mạng, ngoại mạng của Bình trong một tháng và Bình muốn số tiền phải trả cho tổng đài luôn thấp hơn 100 nghìn đồng.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Số tiền Bình phải trả cho cuộc gọi nội mạng mỗi tháng là x (nghìn đồng), số tiền phải trả cho cuộc gọi ngoại mạng mỗi tháng là 2y (nghìn đồng) và x∈N,y∈N. |
|
b) x+2y<100. |
|
c) Nếu 50 và 20 lần lượt là số phút gọi nội mạng, ngoại mạng của Bình trong một tháng thì số tiền phải trả cho tổng đài thấp hơn 100 nghìn đồng. |
|
d) Nếu 50 và 25 lần lượt là số phút gọi nội mạng, ngoại mạng trong một tháng thì số tiền phải trả cho tổng đài vượt quá mục tiêu của Bình. |
|
Cho sinα=31.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) cos2α=98. |
|
b) A=sin2α+3cos2α=935. |
|
c) B=5sin2α−cos2α=−31. |
|
d) C=sin2α+3cos2α+cos2α−7sin2α=2. |
|
Lớp 10A có tất cả 40 học sinh trong đó có 13 học sinh chỉ thích đá bóng, 18 học sinh chỉ thích chơi cầu lông và số học sinh còn lại thích chơi cả hai môn thể thao nói trên.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Có 9 học sinh thích chơi cả hai môn cầu lông và bóng đá. |
|
b) Có 22 học sinh thích bóng đá. |
|
c) Có 26 học sinh thích cầu lông. |
|
d) Có 21 học sinh chỉ thích chơi một trong hai môn cầu lông và bóng đá. |
|
Cho các tập hợp khác rỗng A=(m−18;2m+7), B=(m−12;21) và C=(−15;15). Có bao nhiêu giá trị nguyên của tham số m để A\B⊂C?
Trả lời:
Trong đợt quyên góp ủng hộ đồng bào miền Bắc bị lũ lụt năm 2024, có 25 học sinh lớp 2A đã tham gia ủng hộ, mỗi học sinh ủng hộ nhiều nhất hai tờ tiền khác nhau trong ba loại tờ tiền mệnh giá 5 000 đồng, 10 000 đồng và 20 000 đồng. Biết rằng số học sinh đã tham gia ủng hộ thỏa mãn đồng thời ba kết quả sau:
(1) Số học sinh chỉ ủng hộ một tờ 5 000 đồng bằng tổng số học sinh chỉ ủng hộ một tờ 10 000 đồng và số học sinh chỉ ủng hộ một tờ 20 000 đồng.
(2) Trong số học sinh không ủng hộ tờ 5 000 đồng thì số học sinh có ủng hộ tờ 10 000 đồng nhiều gấp hai lần số học sinh có ủng hộ tờ 20 000 đồng.
(3) Số học sinh chỉ ủng hộ một tờ 5 000 đồng nhiều hơn số học sinh ủng hộ tờ 5 000 đồng và một tờ khác là 1 học sinh.
Có bao nhiêu học sinh lớp 2A chỉ ủng hộ một tờ 10 000 đồng?
Trả lời:
Tìm các nghiệm (x;y) của bất phương trình 2x+3y−1≤0. Trong đó x,y là các số nguyên dương. Tính x+y.
Trả lời:
Một máy cán thép có thể sản xuất hai sản phẩm thép tấm và thép cuộn (máy không thể sản xuất hai loại thép cùng lúc và có thể làm việc 40 giờ một tuần). Công suất sản xuất thép tấm là 250 tấn/giờ, công suất sản xuất thép cuộn là 150 tấn/giờ. Mỗi tấn thép tấm có giá 25 USD, mỗi tấn thép cuộn có giá 30 USD. Biết rằng mỗi tuần thị trường chỉ tiêu thụ tối đa 5 000 tấn thép tấm và 3 500 tấn thép cuộn. Cần sản xuất m tấn thép tấm và n tấn thép cuộn một tuần để lợi nhuận thu được là cao nhất. Tính m−n.
Trả lời:
Miền biểu diễn nghiệm của hệ bất phương trình ⎩⎨⎧y≥−2x≥22x+y≤8 là một miền đa giác. Tính diện tích S của đa giác đó.
Trả lời:
Người ta giăng lưới để nuôi riêng một loại cá trên một góc hồ. Biết rằng lưới được giăng theo một đường thẳng từ một vị trí trên bờ ngang đến một vị trí trên bờ dọc và phải đi qua một cái cọc đã cắm sẵn ở vị trí A.
Diện tích nhỏ nhất có thể giăng là bao nhiêu m2, biết rằng khoảng cách từ cọc đến bờ ngang là 5 m và khoảng cách từ cọc đến bờ dọc là 12 m. (Làm tròn kết quả đến hàng đơn vị)
Trả lời: