Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Đề kiểm tra giữa học kì I (đề số 3) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Hàm số y=x2+1x đồng biến trên mỗi khoảng nào dưới đây?
Cho hàm số y=ax4+bx2+c,(a,b,c∈R;a=0) có đồ thị là đường cong như hình vẽ.
Giá trị cực tiểu của hàm số đã cho bằng
Cho hàm số y=f(x) có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Giá trị lớn nhất của hàm số y=−x3+3x trên đoạn [0;2] là
Đồ thị hàm số y=x−23x−5 có đường tiệm cận đứng là đường thẳng nào dưới đây?
Hàm số nào dưới đây có đồ thị là đường cong trong hình vẽ?
Cho hàm số y=f(x) xác định trên R\{1} và có bảng biến thiên như hình bên dưới.
Số nghiệm của phương trình f(x)=0 là
Số lượng sản phẩm bán được của một công ty trong x (tháng) được tính theo công thức S(x)=200(5−2+x9),trong đó x≥1. Xem y=S(x) là một hàm số xác định trên nửa khoảng [1;+∞), tiệm cận ngang của đồ thị hàm số đó là
Với giá trị nào dưới đây của m thì hàm số y=cos2x+mx đồng biến trên R?
Số giá trị của tham số m để đồ thị hàm số y=mx+1x+m không có tiệm cận đứng là
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ:
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Đồ thị hàm số có đường tiệm cận đứng x=2. |
|
b) Hàm số có đúng 1 điểm cực trị. |
|
c) Hàm số đạt giá trị lớn nhất là 2 tại x=4. |
|
d) Hàm số đồng biến trên khoảng (2;3). |
|
Cho hàm số y=f(x) có bảng biến thiên như sau:
(Nhấp vào ô màu vàng để chọn đúng / sai)
a) Hàm số đã cho đồng biến trên R. |
|
b) Phương trình y=0 có 3 nghiệm phân biệt. |
|
c) Hàm số đã cho không có cực trị. |
|
d) Số đường tiệm cận của đồ thị hàm số là 3. |
|
Ông An muốn xây một cái bể chứa nước lớn dạng một khối hộp chữ nhật không nắp có thể tích bằng 288 m3. Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng, giá thuê nhân công để xây bể là 500000 đồng/m2. Ba kích thước của bể được mô tả như hình vẽ dưới (a(m)>0,c(m)>0)
Nếu ông An biết xác định các kích thước của bể hợp lí thì chi phí thuê nhân công sẽ thấp nhất (Biết độ dày thành bể và đáy bể không đáng kể). Khi đó:
a) Diện tích các mặt cần xây là S=2a2+6ac. |
|
b) 2a2c=280. |
|
c) Diện tích các mặt cần xây nhỏ nhất là 216 m2. |
|
d) Chi phí thấp nhất để xây dựng bể đó là 108 triệu đồng. |
|
Cho hàm số y=f(x) có bảng biến thiên như sau:
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Giá trị nhỏ nhất của hàm số trên [−2,5;1,5] là −2. |
|
b) Hàm số xác định và liên tục trên R. |
|
c) Điểm cực tiểu của đồ thị hàm số đã cho là (3;−2). |
|
d) Với −1<m<1 thì phương trình f(x)=m có 4 nghiệm phân biệt. |
|
Từ một tấm tôn hình chữ nhật có các kích thước là x(m), y(m) với x>1và y>1 và diện tích bằng 4m2, người ta cắt bốn hình vuông bằng nhau ở bốn góc rồi gập thành một cái thùng dạng hình hộp chữ nhật không nắp (như hình vẽ) có chiều cao bằng 0,5 m. Thể tích của thùng là hàm số V(x) trên khoảng (1;+∞). Đồ thị hàm số y=V(x)1 có bao nhiêu đường tiệm cận đứng?
Trả lời:
Độ cao so với mặt đất của một quả bóng được ném lên theo phương thẳng đứng được mô tả bởi hàm số bậc hai h(t)=−4,9t2+20t+1, trong đó độ cao h(t) tính bằng mét và thời gian t tính bằng giây. Tại thời điểm x giây kể từ khi bắt đầu được ném lên thì quả bóng đạt độ cao lớn nhất. Tính x. (kết quả làm tròn đến hàng phần trăm)
Trả lời:
Một chất điểm chuyển động theo quy luật và quãng đường di chuyển được sau t giây được tính theo công thức S(t)=−3t3+243t2 (m). Vận tốc v (m/s) của chuyển động đạt giá trị lớn nhất khi t bằng bao nhiêu giây?
Trả lời:
Một cửa hàng kinh doanh rau tươi ước tính doanh thu bởi hàm số f(x)=x2−29000x+1000100000 (đồng) và tiền lãi thu được là g(x)=1000x+100000 (đồng) với x (đồng) là giá bán cho mỗi kg rau tươi. Biết doanh thu bằng tổng tiền lãi và tiền vốn. Tìm giá bán mỗi kg rau tươi (đơn vị nghìn đồng) sao cho cửa hàng phải bỏ vốn ra ít nhất.
Trả lời:
Cho hàm y=f(x) có bảng biến thiên như sau:
Tìm số nghiệm của phương trình 4f2(x)−9=0.
Trả lời:
Cho hàm số y=f(x) xác định trên R và có đạo hàm f′(x)=(2−x)(x+3)g(x)+2024 trong đó g(x)<0,∀x∈R. Hàm số y=f(1−x)+2024x+2025 đồng biến trên khoảng (a;b). Tính giá trị biểu thức P=a+b.
Trả lời: .