Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Đề kiểm tra giữa học kì I (đề số 3) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Hàm số y=x2+1x đồng biến trên mỗi khoảng nào dưới đây?
Cho hàm số y=f(x) có đạo hàm f′(x)=x.(x−1)2, ∀x∈R. Số điểm cực trị của hàm số đã cho là
Cho hàm số y=f(x) có bảng xét dấu đạo hàm như sau.
Mệnh đề nào sau đây đúng?
Cho hàm số y=f(x) có x→+∞limf(x)=2, x→−∞limf(x)=+∞. Khẳng định nào sau đây đúng?
Đường cong ở hình dưới là đồ thị của hàm số nào?
Cho hình hộp ABCD.A′B′C′D′, có đáy ABCD hình bình hành tâm O.
Khi đó 2AO bằng vectơ nào dưới đây?
Trong không gian với hệ tọa độ Oxyz, cho hình chữ nhật OKMN.
Tọa độ đỉnh M của hình chữ nhật là
Trong không gian Oxyz, cho hai vectơ u=(1;1;0) và v=(2;0;−1). Độ dài ∣u+2v∣ bằng
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=2sinx trên đoạn [−6π;65π]. Tích m.M bằng
Cho ba hàm số: y=x−32x+1;y=x+3−x+1 và y=3x+22x. Có bao nhiêu hàm số mà đồ thị hàm số có tiệm cận ngang là đường thẳng y=2?
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=x−2x2+5 trên [−2;1]. Giá trị của M+2m bằng
Cho hàm số y=f(x) xác định, liên tục trên R và có bảng biến thiên như sau.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Hàm số có giá trị cực đại bằng 3. |
|
b) Hàm số có hai điểm cực trị. |
|
c) Hàm số có giá trị lớn nhất bằng 1, nhỏ nhất bằng −31. |
|
d) Đồ thị hàm số không cắt trục hoành. |
|
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ:
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Phương trình 2f(x)=5 có 3 nghiệm. |
|
b) Hàm số đồng biến trên khoảng (−3;5). |
|
c) Giá trị lớn nhất của hàm số trên [−1;2] bằng 1. |
|
d) Hàm số đã cho có 2 cực trị. |
|
Ông An muốn xây một cái bể chứa nước lớn dạng một khối hộp chữ nhật không nắp có thể tích bằng 288 m3. Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng, giá thuê nhân công để xây bể là 500000 đồng/m2. Ba kích thước của bể được mô tả như hình vẽ dưới (a (m) >0; c (m) >0).
Nếu ông An biết xác định các kích thước của bể hợp lí thì chi phí thuê nhân công sẽ thấp nhất (Biết độ dày thành bể và đáy bể không đáng kể).
a) Diện tích các mặt cần xây là S=2a2+6ac m2. |
|
b) 2a2c=280. |
|
c) Diện tích các mặt cần xây nhỏ nhất là 216 m2. |
|
d) Chi phí thấp nhất để xây dựng bể đó là 108 triệu đồng. |
|
Một vật nặng O được kéo từ ba hướng như hình vẽ và chịu tác dụng của ba lực F1,F2,F3, có độ lớn lần lượt là 24 N, 12 N, 6 N. Biết góc tạo bởi hai lực F1,F2 là 120∘ và lực thứ ba vuông góc với hai lực đầu tiên.
Trong đó điểm D là đỉnh của hình bình hành OBDA và E là đỉnh của hình bình hành OCED.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) BO+BA=BD. |
|
b) OE=OA+OB+OC. |
|
c) Độ dài vectơ OD là 127. |
|
d) Độ lớn hợp lực tác dụng vào vật O là 613 N. |
|
Độ giảm huyết áp của một bệnh nhân được xác định bởi công thức G(x)=0,024x2(30−x), trong đó x là liều lượng thuốc tiêm cho bệnh nhân cao huyết áp (x được tính bằng mg). Tìm lượng thuốc x tiêm cho bệnh nhân cao huyết áp để huyết áp giảm nhiều nhất.
Trả lời:
Cho một tấm nhôm hình vuông có cạnh 24 cm. Người ta cắt ở bốn góc của tấm nhôm đó bốn hình vuông bằng nhau, mỗi hình vuông có cạnh bằng x (cm), rồi gấp tấm nhôm lại như hình vẽ dưới đây để được một khối hộp chữ nhật không nắp.
Tìm x (đơn vị cm) sao cho thể tích khối hộp lớn nhất.
Trả lời:
Một chiếc đèn chùm treo có khối lượng m=7 kg được thiết kế với đĩa đèn được giữ bởi bốn đoạn xích SA,SB,SC,SD sao cho S.ABCD là hình chóp tứ giác đều có ASC=50∘. Tính độ lớn của lực căng cho mỗi sợi xích khi đèn đứng yên. (Làm tròn kết quả đến chữ số thập phân thứ nhất, đơn vị N)
Trả lời:
Một bể chứa 2 m3 nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng độ không đổi với tốc độ 20 lít/phút. Biết rằng nồng độ muối trong bể sau t phút (tính bằng tỉ số của khối lượng muối trong bể và thể tích nước trong bể, đơn vị: gam/lít) là một hàm số f(t), thời gian t tính bằng phút. Biết rằng tiệm cận ngang của đồ thị hàm số y=f(t) là y=10. Tính nồng độ muối trong bể sau khi bơm được 1 giờ. (làm tròn kết quả đến hàng phần trăm, đơn vị gam/lít)
Trả lời:
Cho hàm số y=f(x) xác định trên R và có bảng biến thiên như sau:
Hàm số y=g(x)=f3(x3+3x)+2024 có bao nhiêu điểm cực tiểu?
Trả lời:
Tìm giá trị lớn nhất của tham số thực m để hàm số y=3x3−x2−mx+1 đồng biến trên tập xác định.
Trả lời: