Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Đề kiểm tra giữa học kì I (đề số 2) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hàm số y=f(x) có đồ thị là đường cong như hình vẽ:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Cho hàm số y=f(x) có đạo hàm f′(x)=x.(x−1)2, ∀x∈R. Số điểm cực trị của hàm số đã cho là
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=f(x)=x+12x−1 trên đoạn [0;3]. Giá trị M−m bằng
Cho hàm số bậc ba y=f(x) có đồ thị như hình vẽ:
Trên đoạn [0;1], hàm số y=f(x) đạt giá trị nhỏ nhất tại
Đồ thị hàm số y=4x−1x+1 có đường tiệm cận ngang là đường thẳng nào dưới đây?
Trong không gian với hệ toạ độ Oxyz, cho hình lập phương ABCD.A′B′C′D′ có đỉnh A trùng với gốc toạ độ O, điểm B(1;0;0), D(0;1;0), D′(0;1;−1).
Toạ độ vectơ B′D′ tương ứng là
Hàm số nào dưới đây có bảng biến thiên như hình vẽ?
Cho hàm số y=f(x)=x2+1. Số nghiệm của phương trình f(x+3)=1 là
Một hợp tác xã nuôi cá thí nghiệm trong hồ. Người ta thấy rằng nếu trên mỗi đơn vị diện tích của mặt hồ có n con cá thì trung bình mỗi con cá sau một vụ cân nặng P(n)=480–20n (gam). Hỏi phải thả số lượng cá trên một đơn vị diện tích của mặt hồ thuộc khoảng nào dưới đây để cân nặng trung bình của số cá đó tăng?
Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC có ba đỉnh A(−1;1;−3), B(4;2;1), C(3;0;5). Tọa độ trọng tâm G của tam giác ABC là
Cho hình hộp ABCD.A′B′C′D′. Giá trị của k thích hợp điền vào đẳng thức vectơ AC+BA′+k(DB+C′D)=0 là
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ:
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Đồ thị hàm số có đường tiệm cận đứng x=2. |
|
b) Hàm số có đúng 1 điểm cực trị. |
|
c) Hàm số đạt giá trị lớn nhất là 2 tại x=4. |
|
d) Hàm số đồng biến trên khoảng (2;3). |
|
Một bể chứa 3000 lít nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng độ 25 gam muối cho một lít nước với tốc độ 20 lít/phút.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Sau một giờ bơm thì khối lượng muối trong bể là 30 (kg) |
|
b) Thể tích lượng nước trong bể sau thời gian t phút là 3000+20t (lít) |
|
c) Giả sử nồng độ muối trong nước trong bể sau t phút được được xác định bởi một hàm số f(t) trên [0;+∞) (gam/ lít) thì đường tiệm cận ngang của đồ thị hàm số y=f(t) là đường thẳng y=20. |
|
d) Khi t càng lớn thì nồng độ muối trong bể tiến gần đến 25 gam/lít. |
|
Một loại thuốc được dùng cho một bệnh nhân và nồng độ thuốc trong máu của bệnh nhân được giám sát bởi bác sĩ. Biết rằng nồng độ thuốc trong máu của bệnh nhân sau khi tiêm vào cơ thể trong t giờ được cho bởi hàm số có công thức c(t)=t2+1t (mg/L). Khi đó
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Nồng độ thuốc trong máu của bện nhân sau 3 giờ là c(3)=103(mg/L). |
|
b) Đạo hàm của hàm số c(t)=t2+1t là c′(t)=(t2+1)21−t2. |
|
c) Nồng độ thuốc trong máu bệnh nhân tăng trong khoảng t∈(0;2). |
|
d) Nồng độ thuốc trong máu của bệnh nhân cao nhất khi t=21. |
|
Trong không gian với hệ toạ độ Oxyz cho hai vectơ a,b thỏa mãn (a;b)=120∘;∣a∣=2; ∣b∣=3.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) a.b=−3. |
|
b) (3a+2b)2=108. |
|
c) a.(3a+2b)=10 |
|
d) Góc giữa hai vectơ a và x=3a+2b bằng 60∘. |
|
Từ một tấm tôn hình chữ nhật có các kích thước là x(m), y(m) với x>1và y>1 và diện tích bằng 4m2, người ta cắt bốn hình vuông bằng nhau ở bốn góc rồi gập thành một cái thùng dạng hình hộp chữ nhật không nắp (như hình vẽ) có chiều cao bằng 0,5 m. Thể tích của thùng là hàm số V(x) trên khoảng (1;+∞). Đồ thị hàm số y=V(x)1 có bao nhiêu đường tiệm cận đứng?
Trả lời:
Biết thể tích V (đơn vị: centimét khối) của 1 kg nước tại nhiệt độ T, (0∘C ≤T≤30∘C) được tính bởi công thức: V(T)=999,87−0,06426T+0,0085043T2−0,0000679T3. Thể tích V(T) thấp nhất ở nhiệt độ bao nhiêu ∘C?
Trả lời:
Một hãng dược phẩm dùng những chiếc lọ bằng nhựa có dạng hình trụ để đựng thuốc. Biết rằng mỗi lọ có thể tích là 16π cm3 và bề dày không đáng kể. Tính bán kính đáy R, đơn vị cm của lọ để tốn ít nguyên liệu sản xuất lọ nhất (kể cả nắp lọ).
Trả lời:
Một nhà xuất bản nhận in 4 000 ấn phẩm. Nhà xuất bản có tất cả 14 máy in được cài đặt, hoạt động tự động và giám sát bởi 1 kĩ sư. Mỗi máy in có thể in được 30 ấn phẩm trong một giờ. Chi phí cài đặt máy in là 120 nghìn đồng/máy, chi phí giám sát là 90 nghìn đồng/giờ. Số máy in nhà xuất bản nên sử dụng để chi phí in là nhỏ nhất là bao nhiêu máy?
Trả lời:
Một chiếc đèn tròn được treo song song với mặt phẳng nằm ngang bởi ba sợi dây không dãn xuất phát từ điểm O trên trần nhà lần lượt buộc vào ba điểm A,B,C trên đèn tròn sao cho tam giác ABC đều. Độ dài L của ba đoạn dây OA,OB,OC đều bằng l (m). Trọng lượng của chiếc đèn là 27 N và bán kính của chiếc đèn là 0,5 m.
Xác định chiều dài tối thiểu của mỗi sợi dây. Biết rằng mỗi sợi dây đó được thiết kế để chịu được lực căng tối đa là 12 N. (Chiều dài tính theo đơn vị cm và làm tròn đến chữ số thập phân thứ nhất)
Trả lời:
Có ba lực cùng tác động vào một vật. Hai trong ba lực này hợp với nhau một góc 100∘ và có độ lớn lần lượt là 25 N và 12 N. Lực thứ ba vuông góc với mặt phẳng tạo bởi hai lực đã cho và có độ lớn 4 N. Tính độ lớn của hợp lực của ba lực trên. (làm tròn đến hàng đơn vị)
Trả lời: