Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Đề kiểm tra học kì I (đề số 2) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho cấp số cộng (un) có u1=2 và công sai d=10. Khi đó số 2022 là số hạng thứ mấy trong dãy?
Dãy số nào sau đây không phải các số hạng đầu của một cấp số nhân?
Giới hạn nào sau đây có giá trị bằng 0?
Khảo sát về thời gian (phút) đi từ nhà đến nơi làm việc của một số nhân viên trong một công ty như sau.
Thời gian (phút) | Số nhân viên |
[15;20) | 6 |
[20;25) | 14 |
[25;30) | 25 |
[30;35) | 37 |
[35;40) | 21 |
[40;45) | 13 |
[45;50) | 9 |
Khẳng định nào sau đây sai?
Mệnh đề nào sau đây đúng?
Cho hình lập phương ABCD.A′B′C′D′. Các cạnh nào sau đây song song với mặt phẳng (AA′C′C)?
Mệnh đề nào sau đây đúng?
Số vị trí biểu diễn các nghiệm của phương trình 4cos22x−4cos2x−3=0 trên đường tròn lượng giác là
Dãy số nào sau đây là dãy số giảm?
Một đồng hồ đánh giờ, khi kim giờ chỉ số n (từ 1 đến 12) thì đồng hồ đánh đúng n tiếng. Trong một ngày (24 giờ) đồng hồ đánh được bao nhiêu tiếng?
Cho A=x→−1limx+1x2−x−2 và B=x→0limx2(3x+1−1). Giá trị của biểu thức A−2B là
Một bảng giá cước taxi được cho như sau:
Giá mở cửa (0,5 km) | Giá cước các km tiếp theo đến 30 km | Giá cước từ km thứ 31 |
10000 đồng | 13500 đồng | 11000 đồng |
a) Khi x>30, tiền cước là f(x)=11000(x−30). |
|
b) Công thức hàm số mô tả số tiền khách phải trả theo quãng đường di chuyển f(x)=⎩⎨⎧10000xkhix≤0,55000+13500(x−0,5)khi0,5<x≤30403250+11000(x−30)khix>30. |
|
c) Hàm số f(x)=⎩⎨⎧10000xkhix≤0,55000+13500(x−0,5)khi0,5<x≤30403250+11000(x−30)khix>30 liên tục trên R. |
|
d) Khách hàng đi quãng đường 40 km thì số tiền vị khách đó phải trả là 515000 đồng. |
|
Khi đo mắt cho học sinh khối 10 ở một trường THPT nhân viên y tế ghi nhận lại ở bảng sau:
Thời gian | Số lần |
[0,25;0,75) | 25 |
[0,75;1,25) | 32 |
[1,25;1,75) | 14 |
[1,75;2,25) | 12 |
[2,25;2,75) | 4 |
a) Số trung bình của mẫu số liệu trên là 1,14. |
|
b) Nhóm chứa mốt của số liệu là [0,75;1,25). |
|
c) Mốt của mẫu số liệu là M0=0,89. |
|
d) Trung vị của mẫu số liệu là Me=1,039. |
|
Vào năm con gái được 4 tuổi, một người cha chuẩn bị gửi tiết kiệm đầu mỗi năm một số tiền x, (x∈N) để đến năm con gái 18 tuổi sẽ có được 200 triệu cho con gái đi học đại học. Hiện tại lãi suất tiền gửi hàng năm là 4,8%/năm. Giả sử lãi suất này được giữ ổn định.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Tổng số tiền thu về sau 14 năm là một cấp số nhân có q=(1+4,8%). |
|
b) Số tiền tiết kiệm được sau năm thứ nhất là x+x.(1+4,8%). |
|
c) x=9. |
|
d) Đến năm con gái được 10 tuổi, người cha dự định khi con gái được 18 tuổi sẽ mua thêm cho con gái một chiếc xe máy trị giá 50 triệu đồng. Do đó, kể từ thời điểm đầu năm con gái được 10 tuổi người này cần gửi tiết kiệm y triệu đồng đến khi con gái 18 tuổi, (y∈N). Giá trị nhỏ nhất của y=15. |
|
Thời gian (phút) di chuyển đến trường của nhóm học sinh trường THPT A được tổng hợp dưới bảng sau:
Thời gian (phút) | Số học sinh |
[15;20) | 6 |
[20;25) | 14 |
[25;30) | 25 |
[30;35) | 37 |
[35;40) | 13 |
[40;45) | 9 |
[45;50) | 21 |
Tìm trung vị của mẫu số liệu ghép nhóm trên? (làm tròn đến hàng phần mười)
Trả lời:
Sinh nhật bạn của An vào ngày 1 tháng năm. An muốn mua một món quà sinh nhật cho bạn thân của mình nên quyết định bỏ ống heo 1000 đồng vào ngày 01 tháng 01 năm 2016, sau đó cứ liên tục ngày sau hơn ngày trước 1000 đồng. Đến ngay trước ngày sinh nhật của bạn thân, An đã tích lũy được bao nhiêu tiền? (ghi kết quả dưới dạng số thập phân, đơn vị nghìn đồng)
Trả lời:
Trong thời gian liên tục 25 năm, một người lao động luôn gửi đúng 4000000 đồng vào một ngày cố định của tháng ở ngân hàng M với lãi suất không thay đổi trong suốt thời gian gửi tiền là 0,6% tháng. Gọi A đồng là số tiền người đó có được sau 25 năm. Tính A, đơn vị triệu đồng, làm tròn tới hàng đơn vị.
Trả lời:
Chi phí (đơn vị: triệu đồng) để sản xuất x sản phẩm của một công ty được xác định bởi hàm số: C(x)=5x+12. Khi số sản phầm sản xuất ra càng lớn thì chi phí trung bình của mỗi sản phầm ngày càng giảm nhưng không vượt quá a triệu đồng. Giá trị nhỏ nhất của a là bao nhiêu?
Trả lời:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G là trọng tâm tam giác SAB, I là trung điểm của AB và M là điểm trên cạnh AD. Biết rằng đường thẳng MG song song với một mặt phẳng (SCD). Tỉ số giữa hai đoạn thẳng AM và AD là bao nhiêu (làm tròn đến hàng phần trăm)?
Trả lời:
Vào một thời điểm trong ngày, người ta quan sát thấy bóng râm của một thùng hàng dạng hình hộp chữ nhật ABCD.EFGH là hình chiếu của thùng hàng đó lên mặt đất với phương chiếu GM song song với các tia sáng mặt trời (các tia sáng mặt trời được xem là các đường thẳng song song với nhau), M trùng với điểm đối xứng với A qua D. Tính diện tích phần bóng râm được tô màu trong hình vẽ bên dưới, biết rằng BC=8 m, CD=2 m và CG=4 m. (kết quả tính theo đơn vị m2)
Trả lời: