Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Đề kiểm tra học kì I (đề số 1) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hàm số y=f(x) có đồ thị như hình vẽ:
Hàm số đã cho nghịch biến trên khoảng nào sau đây?
Số điểm cực trị của hàm số y=34x3−2x2−x−3 là
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ:
Giá trị nhỏ nhất của hàm số y=f(x) trên đoạn [−1;2] là
Trong không gian Oxyz, cho hai vectơ u=(1;1;0) và v=(2;0;−1). Độ dài ∣u+2v∣ bằng
Trong không gian Oxyz, cho hai vectơ a=(−1;3;−3) và b=(2;1;−2). Tọa độ của vectơ b−a là
Khảo sát về thời gian (phút) đi từ nhà đến nơi làm việc của một số nhân viên trong một công ty như sau.
Thời gian (phút) | Số nhân viên |
[15;20) | 6 |
[20;25) | 14 |
[25;30) | 25 |
[30;35) | 37 |
[35;40) | 21 |
[40;45) | 13 |
[45;50) | 9 |
Khoảng biến thiên của mẫu số liệu trên là
Tích của giá trị nhỏ nhất và giá trị lớn nhất của hàm số y=f(x)=x+x4 trên đoạn [1;3] bằng
Đồ thị hàm số y=x2+2x+2 có bao nhiêu đường tiệm cận xiên?
Trong bốn hàm số dưới đây, hàm số nào có bảng biến thiên như hình vẽ?
Căn lều gỗ được phác thảo dưới dạng một hình lăng trụ đứng tam giác OAB.O′A′B′ với hệ trục toạ độ Oxyz như hình vẽ (đơn vị đo lấy theo centimét).
Hai điểm A′ và B′ có tọa độ lần lượt là (240;450;0) và (120;450;300). Mỗi căn lều gỗ có chiều dài là a cm, chiều rộng là b cm, mỗi cạnh bên của mặt tiền có độ dài là c cm. Giá trị a+b+c là
Hằng ngày ông Thắng đều đi xe buýt từ nhà đến cơ quan. Dưới đây là bảng thống kê thời gian của 100 lần ông Thắng đi xe buýt từ nhà đến cơ quan.
Thời gian (phút) |
Số lần |
[15;18) | 22 |
[18;21) | 38 |
[21;24) | 27 |
[24;27) | 8 |
[27;30) | 4 |
[30;33) | 1 |
Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên (làm tròn đến hàng phần trăm) bằng
Một bể chứa 5000 lít nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng độ 30 gam muối cho mỗi lít nước với tốc độ 25 lít/phút.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Sau 10 phút bơm số lượng muối trong bể là 300 gam. |
|
b) Nếu bơm trong một giờ đồng hồ thì số lượng muối trong bể không vượt quá 2 kg. |
|
c) Nồng độ muối trong bể sau t phút (tính bằng tỉ số của khối lượng muối trong bể và thể tích nước trong bể, đơn vị: gam/lít) là f(t)=200+t30t. |
|
d) Khi t đủ lớn thì nồng độ muối trong bể sẽ tiến gần đến mức 30 (gam/lít). |
|
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ:
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Phương trình 2f(x)=5 có 3 nghiệm. |
|
b) Hàm số đồng biến trên khoảng (−3;5). |
|
c) Giá trị lớn nhất của hàm số trên [−1;2] bằng 1. |
|
d) Hàm số đã cho có 2 cực trị. |
|
Trong không gian Oxyz, cho tam giác ABC có A(1;2;4),B(4;−2;1),C(3;4;7).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Toạ độ trọng tâm G của tam giác ABC là G(38;34;4). |
|
b) Toạ độ điểm D sao cho ABCD là hình bình hành là D(0;8;10). |
|
c) Toạ độ điểm M thuộc đoạn AB sao cho MB=2MA là M(2;32;3). |
|
d) cosBAC=34112. |
|
Bảng sau đây cho biết chiều cao của các học sinh lớp 12A và lớp 12B.
Chiều cao (cm) |
Số học sinh của lớp 12A |
Số học sinh của lớp 12B |
[145;150) | 1 | 0 |
[150;155) | 0 | 0 |
[155;160) | 10 | 15 |
[160;165) | 12 | 9 |
[165;170) | 12 | 10 |
[170;175) | 5 | 8 |
a) So sánh hai khoảng biến thiên của hai mẫu số liệu trên, ta thấy mẫu số liệu về chiều cao của lớp 12A phân tán hơn lớp 12B. |
|
b) Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm về chiều cao của học sinh lớp 12A là 159,5. |
|
c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm về chiều cao của học sinh lớp 12B là 9,5. |
|
d) So sánh hai khoảng tứ phân vị của hai mẫu số liệu ghép nhóm, ta thấy mẫu số liệu ghép nhóm về chiều cao của học sinh lớp 12A phân tán hơn của lớp 12B. |
|
Độ cao so với mặt đất của một quả bóng được ném lên theo phương thẳng đứng được mô tả bởi hàm số bậc hai h(t)=−4,9t2+20t+1, trong đó độ cao h(t) tính bằng mét và thời gian t tính bằng giây. Tại thời điểm x giây kể từ khi bắt đầu được ném lên thì quả bóng đạt độ cao lớn nhất. Tính x. (kết quả làm tròn đến hàng phần trăm)
Trả lời:
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ.
Phương trình ∣f(x)∣=2 có bao nhiêu nghiệm phân biệt?
Trả lời:
Độ giảm huyết áp của một bệnh nhân được xác định bởi công thức G(x)=0,024x2(30−x), trong đó x là liều lượng thuốc tiêm cho bệnh nhân cao huyết áp (x được tính bằng mg). Tìm lượng thuốc x tiêm cho bệnh nhân cao huyết áp để huyết áp giảm nhiều nhất.
Trả lời:
Cho hình hộp chữ nhật ABCD.A′B′C′D′. Trên đoạn thẳng AC và DC′ lần lượt lấy các điểm M và N sao cho MN // BD′. Biết BD′=6, tính độ dài đoạn thẳng MN.
Trả lời:
Trong hóa học cấu tạo của phân tử ammoniac (NH3) có dạng hình chóp tam giác đều mà đỉnh là nguyên tử nitrogen (N) và đáy là tam giác H1H2H3 với H1,H2,H3 là vị trí của ba nguyên tử hydrogen (H). Góc tạo bởi liên kết H−N−H, có hai cạnh là hai đoạn thẳng nối N với hai trong ba điểm H1,H2,H3 (chẳng hạn như H1NH2) , được gọi là góc liên kết của phân tử NH3. Góc này xấp xỉ 120∘. Trong không gian Oxyz, cho một phân tử NH3 được biểu diễn bởi hình chóp tam giác đều N.H1H2H3 với O là tâm của đáy. Nguyên tử nitrogen được biểu diễn bởi điểm N thuộc trục Oz, ba nguyên tử hydrogen ở các vị trị H1,H2,H3 trong đó H1(0;−3;0) và H2H3 song song với trục Ox. Tính khoảng cách giữa nguyên tử nitrogen với mỗi nguyên tử hydrogen. (làm tròn kết quả đến hàng phần trăm)
Trả lời:
Cho bảng mẫu số liệu ghép nhóm sau:
Nhóm | Tần số |
[20;26) | 7 |
[26;32) | 9 |
[32;38) | 5 |
[38;44) | 4 |
[44;50) | 11 |
Tính độ lệch chuẩn của mẫu số liệu ghép nhóm trên. (Làm tròn kết quả đến chữ số hàng phần trăm)
Trả lời: