Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Đề kiểm tra giữa học kì I (đề số 2) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hàm số y=f(x) liên tục trên R và có đạo hàm f′(x)=(x+1)(3−x)2. Hàm số y=f(x) đồng biến trên khoảng nào dưới đây?
Số điểm cực trị của hàm số y=2x4−4x2+2024 là
Cho hàm số y=f(x) liên tục trên R và có bảng biến thiên như sau:
Điểm cực tiểu của đồ thị hàm số là
Cho hàm số y=f(x) xác định và liên tục trên khoảng (−∞;21) và (21;+∞). Đồ thị hàm số y=f(x) là đường cong trong hình vẽ.
Khẳng định nào sau đây đúng?
Hàm số nào sau đây có đồ thị như hình vẽ?
Hình trên là bảng biến thiên của hàm số nào trong bốn hàm số dưới đây?
Cho hàm số y=f(x) xác định trên R\{1} và có bảng biến thiên như hình bên dưới.
Số nghiệm của phương trình f(x)=0 là
Giá trị lớn nhất của hàm số y=−x4+3x2+1 trên [0;2] là
Tâm đối xứng của đồ thị hàm số y=x+23x−7 có tọa độ
Tích của giá trị nhỏ nhất và giá trị lớn nhất của hàm số y=f(x)=x+x4 trên đoạn [1;3] bằng
Cho hàm số y=x3−x2+3mx có tham số thực m.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Với m=−1,y′(−1)=−2. |
|
b) Với m=0 thì hàm số đồng biến trên R. |
|
c) Hàm số đồng biến trên R⇔m≥91. |
|
d) Với m∈(−∞;91) thì hàm số nghịch biến trên khoảng có độ dài lớn hơn 1. |
|
Cho hàm số y=f(x) xác định, liên tục trên R và có bảng biến thiên như sau.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Hàm số có giá trị cực đại bằng 3. |
|
b) Hàm số có hai điểm cực trị. |
|
c) Hàm số có giá trị lớn nhất bằng 1, nhỏ nhất bằng −31. |
|
d) Đồ thị hàm số không cắt trục hoành. |
|
Cho hàm số y=x−2x+2 có đồ thị (C).
(Nhấp vào ô màu vàng để chọn đúng / sai)
a) Đồ thị (C) có đường tiệm cận đứng x=2. |
|
b) Đồ thị (C) nhận điểm I(1;1) làm tâm đối xứng. |
|
c) Đường thẳng đường thẳng d:y=x−1 cắt đồ thị (C) tại 2 điểm phân biệt có độ dài bằng 45. |
|
d) Gọi M là điểm bất kì thuộc đồ thị (C). Khi đó tổng khoảng cách từ điểm M đến hai đường tiệm cận của đồ thị (C) đạt giá trị nhỏ nhất bằng 4. |
|
Trong 200 gam dung dịch muối nồng độ 15%, giả sử thêm vào dung dịch x (gam) muối tinh khiết và được dung dịch có nồng độ f(x)%.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Hàm số f(x)=x+30100(x+200). |
|
b) Đạo hàm của hàm số luôn nhận giá trị âm trên khoảng (0;+∞). |
|
c) Thêm càng nhiều gam muối tinh khiết thì nồng độ phần trăm càng tăng và không vượt quá 100%. |
|
d) Tiệm cận ngang của đồ thị hàm số y=f(x) là y=100. |
|
Cho hàm số y=f(x) có đạo hàm f′(x)=(x−1)2(x2−4x) với mọi x∈R. Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y=f(x2−6x+m) có 5 điểm cực trị?
Trả lời:
Người ta muốn làm một cái bể dạng hình hộp chữ nhật không nắp (như hình vẽ) có thể tích bằng 1 m3. Chiều cao của bể là 5dm, các kích thước khác là x m, y m với x>0 và y>0. Diện tích toàn phần của bể (không kể nắp) là hàm số S(x) trên khoảng (0;+∞).
Đường tiệm cận xiên của đồ thị hàm số S(x) là đường thẳng y=ax+b. Tính P=a2+b2.
Trả lời:
Trong bài thực hành của môn huấn luyện quân sự có tình huống chiến sĩ phải bơi qua một con sông để tấn công một mục tiêu ở phía bờ bên kia sông. Biết rằng lòng sông rộng 100 m và vận tốc bơi của chiến sĩ bằng một nửa vận tốc chạy trên bờ. Nếu như dòng sông là thẳng, mục tiêu ở cách chiến sĩ 1 km theo đường chim bay thì người chiến sĩ phải bơi bao nhiêu mét để đến được mục tiêu nhanh nhất? (kết quả làm tròn đến hàng đơn vị)
Trả lời:
Một hãng dược phẩm dùng những chiếc lọ bằng nhựa có dạng hình trụ để đựng thuốc. Biết rằng mỗi lọ có thể tích là 16π cm3 và bề dày không đáng kể. Tính bán kính đáy R, đơn vị cm của lọ để tốn ít nguyên liệu sản xuất lọ nhất (kể cả nắp lọ).
Trả lời:
Một chất điểm chuyển động theo quy luật và quãng đường di chuyển được sau t giây được tính theo công thức S(t)=−3t3+243t2 (m). Vận tốc v (m/s) của chuyển động đạt giá trị lớn nhất khi t bằng bao nhiêu giây?
Trả lời:
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ sau:
Phương trình f′[5−3f(x)]=0 có bao nhiêu nghiệm thực?
Trả lời: