Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Đề kiểm tra giữa học kì I (đề số 2) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hàm số y=31x3−21x2−12x−1. Mệnh đề nào sau đây đúng?
Hàm số y=f(x) có đạo hàm là f′(x)=x2(x+1)2(2x−1). Số điểm cực trị của hàm số đã cho là
Cho hàm số y=f(x) có bảng xét dấu f′(x) như hình vẽ:
Hàm số đã cho đạt cực đại tại
Cho hàm số y=f(x) có bảng xét dấu đạo hàm như sau.
Mệnh đề nào sau đây đúng?
Đồ thị hàm số y=x+2−3x+1 có các đường tiệm cận đứng, tiệm cận ngang lần lượt là
Hàm số nào dưới đây có bảng biến thiên như hình vẽ?
Tích của giá trị nhỏ nhất và giá trị lớn nhất của hàm số y=f(x)=x+x4 trên đoạn [1;3] bằng
Tâm đối xứng của đồ thị hàm số y=x+23x−7 có tọa độ
Giá trị nhỏ nhất của hàm số y=31x3+2x2−5x+1 trên đoạn [0;2018] là
Cho hàm số y=f(x)=(m2−1)x3+(m−1)x2−x+4 với m là tham số thực.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) f(1)>0∀m. |
|
b) Với m=−1, hàm số nghịch biến trên R. |
|
c) Với m>1 hoặc m<−1, hàm số đồng biến trên R. |
|
d) Có hai giá trị nguyên của tham số m để hàm số nghịch biến trên khoảng (−∞;+∞). |
|
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ:
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Đồ thị hàm số có đường tiệm cận đứng x=2. |
|
b) Hàm số có đúng 1 điểm cực trị. |
|
c) Hàm số đạt giá trị lớn nhất là 2 tại x=4. |
|
d) Hàm số đồng biến trên khoảng (2;3). |
|
Cho hàm số y=f(x)=x+3x2+2x+1 có đồ thị là (C).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) y=f(x)=x−1+x+34,∀x∈(−∞;−3)∪(−3;+∞). |
|
b) Đồ thị (C) không có tiệm cận ngang. |
|
c) Đồ thị (C) có tiệm cận đứng là đường thẳng x=3. |
|
d) Đồ thị (C) có tiệm cận xiên là đường thẳng y=ax+b. Khi đó a2+b2=2. |
|
Số dân của một thị trấn sau t năm kể từ năm 1970 được ước tính bởi công thức f(t)=t+526t+10 (với f(t) được tính bằng nghìn người)
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Số dân của thi trấn đó sau 10 năm khoảng 16000 người. |
|
b) Số dân thị trấn đó vào năm 2025 khoảng 24 nghìn người. |
|
c) Coi f(t)là một hàm số xác định trên nửa khoảng [0;+∞). Đồ thị hàm số y=f(t)=t+526t+10 có tiệm cận ngang là y=26. |
|
d) Đạo hàm của hàm số y=f(t) biểu thị tốc độ tăng dân số của thị trấn (tính bằng nghìn người/năm). Vào năm 1990 thì tốc độ tăng dân số là 0,127 nghìn người trên /năm. |
|
Cho y=f(x) là hàm số bậc ba có đồ thị như hình vẽ.
Có bao nhiêu giá trị nguyên của tham số m để hàm số y=f[f(x)−m] có đúng 8 điểm cực trị?
Trả lời:
Tại một công ty sản xuất đồ chơi an toàn cho trẻ em, công ty phải chi 40000 USD để thiết lập dây chuyền sản xuất ban đầu. Sau đó, cứ sản xuất được một sản phẩm đồ chơi A, công ty phải trả 6 USD cho nguyên liệu ban đầu và nhân công. Gọi x, (x≥1) là số đồ chơi A mà công ty đã sản xuất và P(x) (đơn vị USD) là tổng số tiền bao gồm cả chi phí ban đầu mà công ty phải chi trả khi sản xuất x đồ chơi A. Người ta xác định chi phí trung bình cho mỗi sản phẩm đồ chơi A là F(x)=xP(x). Xem y=F(x) là hàm số theo x xác định trên nửa khoảng [1;+∞) có phương trình đường tiệm cận ngang là y=b. Tính b.
Trả lời:
Xét một chất điểm chuyển động dọc theo trục Ox. Toạ độ của chất điểm tại thời điểm t được xác định bởi hàm số x(t)=t3−6t2+9t với t≥0. Khi đó x′(t) là vận tốc của chất điểm tại thời điểm t, kí hiệu v(t);v′(t) là gia tốc chuyển động của chất điểm tại thời điểm t. Vận tốc của chất điểm giảm dần tới thời điểm ta lại bắt đầu tăng dần. Tính ta.
Trả lời:
Độ giảm huyết áp của một bệnh nhân được xác định bởi công thức G(x)=0,024x2(30−x), trong đó x là liều lượng thuốc tiêm cho bệnh nhân cao huyết áp (x được tính bằng mg). Tìm lượng thuốc để tiêm cho bệnh nhân cao huyết áp để huyết áp giảm nhiều nhất.
Trả lời: mg
Một chất điểm chuyển động có phương trình chuyển động là s=−t3+6t2+17t, với t (s) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và s (m) là quãng đường vật đi được trong khoảng thời gian đó. Trong khoảng thời gian 8 giây đầu tiên, vận tốc v (m/s) của chất điểm đạt giá trị lớn nhất bằng bao nhiêu?
Trả lời: m/s.
Cho hàm số bậc ba y=f(x) có đồ thị là đường cong trong hình vẽ bên dưới.
Phương trình f[2−f(x)]=0 có bao nhiêu nghiệm?
Trả lời: