Xyz OLM
Giới thiệu về bản thân
9 The house were catching fire while they were sleeping
Áp dụng dãy tỉ số bằng nhau
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2y-4}{6}=\dfrac{3z-9}{12}=\dfrac{\left(x-1\right)-\left(2y-4\right)+\left(3z-9\right)}{4-6+12}\)
\(=\dfrac{x-2y+3z-6}{10}=\dfrac{14-6}{10}=\dfrac{4}{5}\)
Khi đó ta được \(\left\{{}\begin{matrix}\dfrac{x-1}{2}=\dfrac{4}{5}\\\dfrac{y-2}{3}=\dfrac{4}{5}\\\dfrac{z-3}{4}=\dfrac{4}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{13}{5}\\y=\dfrac{22}{5}\\z=\dfrac{31}{5}\end{matrix}\right.\)
Khi đó ta được
x(y + 1) - (y + 1) = 10
<=> (x - 1)(y + 1) = 10
Với x;y \(\inℤ\Rightarrow x-1\inℤ;y+1\inℤ\)
Lập bảng xét các trường hợp
x - 1 | 1 | 10 | -10 | -1 |
y + 1 | 10 | 1 | -1 | -10 |
x | 2 | 11 | -9 | 0 |
y | 9 | 0 | -2 | -11 |
Vậy (x;y) = (2;9) ; (11;0) ; (-9;-2) ; (0;-11)
A = 1 + 3 + 32 + 33 + .... + 341
= (1 + 3 + 32) + (33 + 34 + 35) + (339 + 340 + 341)
= (1 + 3 + 32) + 33.(1 + 3 + 32) + ... + 339(1 + 3 + 32)
= (1 + 3 + 32)(1 + 33 + ... + 339)
= 13(1 + 33 + ... + 339)
=> A là hợp số
ĐKXĐ : \(\left\{{}\begin{matrix}x>-2\\y>-2\end{matrix}\right.\)
Có : x3 + x + 2 = y3 - 3y2 + 4y
<=> x3 + x + 2 = (y3 - 3y2 + 3y - 1) + y + 1
<=> x3 + x + 2 = (y - 1)3 + y + 1
<=> x3 - (y - 1)3 + x - y + 1 = 0
<=> (x - y + 1)[x2 + x(y - 1) + (y - 1)2] + (x - y + 1) = 0
<=> (x - y + 1)[x2 + x(y - 1) + (y - 1)2 + 1] = 0
<=> x - y + 1 = 0 (Vì x2 + x(y - 1) + (y - 1)2 + 1 > 0 \(\forall x;y\) )
<=> y = x + 1
Thay y = x + 1
\(2\sqrt{x+2}=y+2\)
\(\Leftrightarrow2\sqrt{x+2}=x+3\)
\(\Leftrightarrow x-2\sqrt{x+2}+3=0\)
\(\Leftrightarrow(\sqrt{x+2}-1)^2=0\)
\(\Leftrightarrow\sqrt{x+2}=1\)
\(\Leftrightarrow x=-1\) (tm)
Khi đó y = 0
Vậy (x;y) = (-1;0)
Mình sửa lại chỗ
\((\overrightarrow{CA}+k\overrightarrow{AB)}(\overrightarrow{AC}+\dfrac{1}{6}\overrightarrow{CB})=0\)
\(\Leftrightarrow-AC^2+\dfrac{1}{6}.CA.CB.cosC+k.AB.AC.cosA+\dfrac{1}{6}.k.AB.CB.cos\left(180^{\text{o}}-B\right)=0\)
\(\Leftrightarrow-12^2+\dfrac{1}{6}.12.11.\dfrac{5}{8}+k.10.12.\dfrac{41}{80}+\dfrac{1}{6}k.10.11.\dfrac{-7}{20}=0\)
\(\Leftrightarrow k=\dfrac{1563}{661}=\dfrac{x}{y}\)
Vì x;y nguyên ; phân số tối giản nên
(x;y) = (1563;661) ; (-1563;-661)
Với (x,y) = (1563;661)
=> P = \(\sqrt{2022.1563-2023.661+2580888}=\sqrt{4404071}\)
Với (x;y) = (-1563;-661)
=> P = \(\sqrt{-2022.1563+2023.661+2580888}=\sqrt{757705}\)
Từ tam giác ABC có AB = 10 ; BC = 11 ; CA = 12
=> \(cosC=\dfrac{AC^2+BC^2-AB^2}{2AC.BC}=\dfrac{11^2+12^2-10^2}{2.11.12}=\dfrac{5}{8}\)
tương tự cosB = \(\dfrac{7}{20}\)
cos A = \(\dfrac{41}{80}\)
Lại có \(CN\perp AM\)
nên \(\overrightarrow{CN}.\overrightarrow{AM}=0\)
\(\Leftrightarrow(\overrightarrow{CA}+\overrightarrow{AN}).(\overrightarrow{AC}+\overrightarrow{CM})=0\)
\(\Leftrightarrow(\overrightarrow{CA}+k\overrightarrow{AB})(\overrightarrow{AC}+\dfrac{1}{5}\overrightarrow{CB})=0\)
\(\Leftrightarrow-AC^2+\dfrac{1}{5}CA.CB.cosC+kAB.AC.cosA+\dfrac{1}{5}k.AB.BC.cos(180^{\text{o}}-B)=0\)
\(\Leftrightarrow-12^2+\dfrac{1}{5}.12.11.\dfrac{5}{8}+k.10.12.\dfrac{41}{80}+\dfrac{1}{5}k.10.11.(-\dfrac{7}{20})=0\)
\(\Leftrightarrow k=\dfrac{1275}{538}=\dfrac{x}{y}\) tối giản => (x ; y) = (1275;538) ; (-1275,-538) (x;y \(\inℤ\))
Với (x,y) = (1275,538)
=> P = \(\sqrt{2022.1275-2023.538+2580888}=\sqrt{4070564}\)
Với (x;y) = (-1275 ; -538)
=> P = \(\sqrt{1091212}\)
Ta có bất đẳng thức sau
a2 + b2 + c2 \(\ge\) ab + bc + ca (1)
Dấu "=" xảy ra <=> a = b = c
Thật vậy (1) <=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca \(\ge0\)
<=> (a - b)2 + (b - c)2 + (c - a)2 \(\ge0\) (bđt này luôn đúng)
Khi đó ta được (1) <=> 2(a2 + b2 + c2) \(\ge\) 2(ab + bc + ca)
<=> 3(a2 + b2 + c2) \(\ge\) 2ab + 2bc + 2ca + a2 + b2 + c2
<=> 3(a2 + b2 + c2) \(\ge\) (a + b + c)2
=> -(a2 + b2 + c2) \(\le\dfrac{(a+b+c)^2}{3}\)
Ta có \(P=\dfrac{b+c}{b+c-a}+\dfrac{c+a}{c+a-b}+\dfrac{a+b}{a+b-c}\)
\(=\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}+3\)
\(=\dfrac{a^2}{ab+ac-a^2}+\dfrac{b^2}{ab+bc-b^2}+\dfrac{c^2}{ac+bc-c^2}+3\)
\(\ge\dfrac{\left(a+b+c\right)^2}{ab+ac-a^2+ab+bc-b^2+ac+bc-c^2}+3\) (BĐT Schwarz)
\(=\dfrac{\left(a+b+c\right)^2}{2ab+2ac+2bc-a^2-b^2-c^2}+3\)
\(=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2-2\left(a^2+b^2+c^2\right)}+3\)
\(\ge\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2-\dfrac{2}{3}\left(a+b+c\right)^2}+3=\dfrac{1}{1-\dfrac{2}{3}}+3=6\) (đpcm)
B = x2 + 9y2 + 2011
= x2 + (3y)2 + 2011
= x2 + (5 - 2x)2 + 2011 (do 2x + 3y = 5)
= x2 + 4x2 - 20x + 25 + 2011
= 5x2 - 20x + 2036
= 5x2 - 20x + 20 + 2016
= 5(x2 - 4x + 4) + 2016
= 5(x - 2)2 + 2016 \(\ge2016\)
=> Min B = 2016 khi x - 2 = 0 <=> x = 2
khi đó y = \(\dfrac{1}{3}\)
Vậy Bmin = 2016 khi x = 2 ; \(y=\dfrac{1}{3}\)
Ta có x2 + y2 + z2 = 6 ; xy - 3x + 2z = 10
Khi đó 4(x2 + y2 + z2) - 4(xy - 3x + 2z) = 24 - 40
<=> 4x2 + 4y2 + 4z2 - 4xy + 12x - 8z + 16 = 0
<=> (x2 - 4xy + 4y2) + (3x2 + 12x + 12) + (4z2 - 8z + 4) = 0
<=> (x - 2y)2 + 3(x + 2)2 + 4(z - 1)2 = 0
<=> \(\left\{{}\begin{matrix}x-2y=0\\x+2=0\\z-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=-2\\z=1\end{matrix}\right.\)
Thay x = -2 ; y = -1 ; z = 1 vào P ta được \(P=\dfrac{1006xy-2019y-x^3+z^5}{x^2+2y^3}\)
\(=\dfrac{1006.(-2).(-1)-2019.(-1)-(-2)^3+1^5}{(-2)^2+2.1^3}\)
\(=\dfrac{2020}{3}\)