Rút gọn biểu thức:
\(A=\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right).\left(x^4+\frac{1-x^4}{1+x^2}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xác định khi x khác +-1
b)
\(A=\left(\frac{\left(2x+1\right).\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{8}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\right).\frac{\left(x-1\right)}{\left(x+1\right)}\)
\(A=\left(\frac{\left(2x^2+3x+1\right)+8-\left(x^2-2x+1\right)}{\left(x-1\right)\left(x+1\right)}\right).\frac{\left(x-1\right)}{\left(x+1\right)}=\frac{x^2+5x+8}{\left(x-1\right)\left(x+1\right)}.\frac{x-1}{x+1}\)
\(A=\frac{x^2+5x+8}{\left(x+1\right)^2}=1+\frac{3\left(x+1\right)+4}{\left(x+1\right)^2}\)
c)
GTNN \(B=\frac{3y+4}{y^2}\ge-\frac{9}{16}\)
GTNN \(A=\frac{7}{16}\)
\(A=2.\left(x^2-2.\frac{1}{4}.x+\frac{1}{16}\right)-\frac{9}{8}=2.\left(x-\frac{1}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\)
Theo bài ra , ta có :
\(\left(x+3\right)^4+\left(x+5\right)^4=16\)
\(\Leftrightarrow\left(x+3+x+5\right)^4=16\)
\(\Leftrightarrow\left(2x+8\right)^4=16\)
\(\Leftrightarrow2x+8=2\)
\(\Leftrightarrow2x=-6\)
\(\Leftrightarrow x=-3\)
Vậy \(x=-3\)
Chúc bạn học tốt =))
b, ta có
goc BDF + goc FDE + gocEDA=180
goc BFD + goc DFE+goc EFC=180
mà goc BDF=goc EFD (chứng minh trên: cmt)
goc FDE= goc DBF (cmt)
=> goc EDA= goc EFC
Xét tam giác ADE và tam giác EFC có
EF=AD(cmt))
góc EDA = EFC ( cmt)
góc FEC= góc EAD ( 2 góc đồng vị của EF//AB)
=> tam giác ADE = tam giác EFC ( dpcm)
c, Vi tam giác ADE= tam giác EFC
=> AE=EC( 2 cạnh tương ứng)
còn phần a nữa
\(A=\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right).\left(x^4+\frac{1-x^4}{1+x^2}\right)\)
\(=\left(\frac{\left(x^2-1\right)\left(x^2+1\right)-\left(x^4-x^2+1\right)}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\right).\left(x^4+\frac{\left(1+x^2\right)\left(1-x^2\right)}{1+x^2}\right)\)
\(=\frac{x^4-1-x^4+x^2-1}{\left(x^2+1\right)\left(x^4-x^2+1\right)}\left(x^4+1-x^2\right)\)
\(=\frac{x^2-2}{x^2+1}\).