giai ho mik vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để hàm số đồng biến thì \(k^2-2k-3>0\Leftrightarrow\left(k+1\right)\left(k-3\right)>0\Leftrightarrow\orbr{\begin{cases}k>3\\k< -1\end{cases}}\)
để hàm số nghịch biến thì \(k^2-2k-3< 0\Leftrightarrow\left(k+1\right)\left(k-3\right)< 0\Leftrightarrow-1< k< 3\)
cho x,y là 2 số dương thỏa mãn x+y=1 , tìm GTNN của A= \(\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}\)
Bạn vào link tham khảo :
https://hoidap247.com/cau-hoi/1226651
# Hok tốt !
\(x+y=1\Rightarrow\hept{\begin{cases}1-x=y\\1-y=x\end{cases}}\)
thay vào A ta được : \(A=\frac{1-y}{\sqrt{y}}+\frac{1-x}{\sqrt{x}}\)
\(\Rightarrow A=\frac{1}{\sqrt{y}}-\sqrt{y}+\frac{1}{\sqrt{x}}-\sqrt{x}\)
\(\Rightarrow A=\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)-\left(\sqrt{x}+\sqrt{y}\right)\)
áp dụng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ta có : \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\ge\frac{4}{\sqrt{x}+\sqrt{y}}\)
áp dụng \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\) ta có : \(\left(\sqrt{x}+\sqrt{y}\right)^2\le2\left(\sqrt{x}^2+\sqrt{y}^2\right)=2\)
\(\Rightarrow\sqrt{x}+\sqrt{y}\le\sqrt{2}\)
\(\Rightarrow A\ge\sqrt{8}-\sqrt{2}=\sqrt{2}\)
dấu = xảy ra khi a=y=1/2
\(\sqrt{\frac{2ab}{a^2+b^2}}=\frac{\sqrt{2ab\left(a^2+b^2\right)}}{a^2+b^2}\) mà \(a^2+b^2\ge2ab\) \(\Rightarrow\sqrt{\frac{2ab}{a^2+b^2}}\ge\frac{2ab}{a^2+b^2}\)
tương tự ta có : \(\sqrt{\frac{2bc}{c^2+b^2}}\ge\frac{2bc}{c^2+b^2}\) và \(\sqrt{\frac{2ac}{a^2+c^2}}\ge\frac{2ac}{c^2+a^2}\)
\(\Rightarrow VT\ge\frac{2ab}{a^2+b^2}+\frac{2bc}{b^2+c^2}+\frac{2ac}{a^2+c^2}\)
\(\Rightarrow VT+3\ge\frac{2ab}{a^2+b^2}+1+\frac{2bc}{b^2+c^2}+1+\frac{2ca}{c^2+a^2}+1\)
\(\Rightarrow VT+3\ge\frac{\left(a+b\right)^2}{a^2+b^2}+\frac{\left(b+c\right)^2}{b^2+c^2}+\frac{\left(c+a\right)^2}{c^2+a^2}\)
áp dụng \(\frac{x^2}{y}+\frac{m^2}{n}+\frac{p^2}{q}\ge\frac{\left(x+m+p\right)^2}{y+n+q}\) ta đc :
\(VT+3\ge\frac{\left(a+b+b+c+c+a\right)^2}{a^2+b^2+c^2+a^2+b^2+c^2}\)
\(\Rightarrow VT+3\ge\frac{4\left(a+b+c\right)^2}{2\left(a^2+b^2+c^2\right)}\)
\(\Rightarrow VT+3\ge\frac{2\left[a^2+b^2+c^2+2\left(ab+bc+ca\right)\right]}{a^2+b^2+c^2}\)
\(\Rightarrow VT+3\ge\frac{2\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}+\frac{4\left(ab+bc+ca\right)}{a^2+b^2+c^2}\)
\(\Rightarrow VT+3\ge\frac{4\left(ab+bc+ca\right)}{a^2+b^2+c^2}+2\)
\(\Rightarrow VT\ge\frac{4\left(ab+bc+ca\right)}{a^2+b^2+c^2}-1\left(đpcm\right)\)
dấu = xảy ra khi a=b=c > 0
vì x2+y2+z2=1 mà x2+y2+z2>=xy+yz+xz suy ra 1>= xy+yz+xz
x2+y2+z2=1 suy ra (x-y)2=1-2xy-z2 ,(y-z)2=1-2yz-x2,(x-z)2=(x-z)2=1-2xz-y2
\(\sqrt{3}+\frac{1}{2\sqrt{3}}[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2]=\)
\(\sqrt{3}+\frac{1}{2\sqrt{3}}[3-\left(2xy+z^2+2yz+x^2+2xz+y^2\right)]\)(do (x-y)2=1-2xy-z2(y-z)2=1-2yz-x2,(x-z)2=(x-z)2=1-2xz-y2)
theo bdt cosi ta có:
\(\sqrt{3}+\frac{1}{2\sqrt{3}}[3-\left(2xy+z^2+2yz+x^2+2xz+y^2\right)]\)
\(\le\sqrt{3}+\frac{1}{2\sqrt{3}}[3-\left(2z\sqrt{2xy}+2y\sqrt{2xz}+2x\sqrt{2yz}\right)]\)
\(\le\sqrt{3}+\frac{1}{2\sqrt{3}}[3-3\sqrt[3]{\left(2z\sqrt{2xy}.2y\sqrt{2xz}.2x\sqrt{2yz}\right)}\)
\(=\sqrt{3}+\frac{\sqrt{3}}{2}[1-2\sqrt{2}.\sqrt[3]{xyz^2}]\)\(=\sqrt{3}\left(1+\frac{1}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\right)=\sqrt{3}\left(\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\right)\)
suy ra
\(\frac{x+y+z}{xy+yz+xz}\ge3.\sqrt[3]{xyz}\left(doxy+yz+xz\le1\right)\)
ta giả sử:
\(3\sqrt[3]{xyz}\ge\sqrt{3}\left(\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\right)\Leftrightarrow\sqrt{3}\ge\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\) mà \(\sqrt{3}>\frac{3}{2}\)
suy ra \(\frac{3}{2}\ge\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\)(luôn đúng) suy ra điều giả sử trên là đúng
hay \(3\sqrt[3]{xyz}\ge\sqrt{3}\left(\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\right)\)
mà \(\frac{x+y+z}{xy+yz+xz}\ge3.\sqrt[3]{xyz}\),\(\sqrt{3}+\frac{1}{2\sqrt{3}}[3-\left(2xy+z^2+2yz+x^2+2xz+y^2\right)]\)\(\le\sqrt{3}\left(\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\right)\)
suy ra \(\frac{x+y+z}{xy+yz+xz}\ge\)\(\sqrt{3}+\frac{1}{2\sqrt{3}}[3-\left(2xy+z^2+2yz+x^2+2xz+y^2\right)]\)
suy ra \(\frac{x+y+z}{xy+yz+xz}\ge\)\(\sqrt{3}+\frac{1}{2\sqrt{3}}[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2]\)(đpcm)
em mới có lớp 8, nếu em làm sai cho em xin lỗi nha anh
dòng suy ra cuối cùng mình ghi lộn, phải là -8+2021 = 2013 mới đúng :v
\(a^2+\frac{8}{a^2}+\frac{b^2}{8}=8\)
\(\Leftrightarrow8a^4+64+a^2b^2=64a^2\)
\(\Leftrightarrow a^2b^2=64a^2-8a^4-64\)
\(\Leftrightarrow a^2b^2=-8\left(a^4-8a^2+8\right)\)
\(\Leftrightarrow a^2b^2=-8\left[\left(a^2-4\right)^2-8\right]\)
\(\Leftrightarrow a^2b^2=-8\left(a^2-4\right)^2+64\le64\)
\(\Leftrightarrow-8\le ab\le8\)
\(\Rightarrow A\ge-8\sqrt{6}+2021\)
dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}ab=-8\\a^2-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}b=\pm4\\a=\pm2\end{cases}}\)
a, ĐK : x >= 0
\(x+3\sqrt{x}=\sqrt{x}\left(\sqrt{x}+3\right)\)
b, ĐK : x >= 0
\(x-9\sqrt{x}=\sqrt{x}\left(\sqrt{x}-9\right)\)
c,ĐK : x >= 0
\(-2x+10\sqrt{x}=-2\sqrt{x}\left(\sqrt{x}-5\right)\)
d, ĐK : x >= 0
\(-5x+15\sqrt{x}=-5\sqrt{x}\left(\sqrt{x}-3\right)\)