Cho hai điểm $A, B$ phân biệt. Xác định điểm $M$ biết $2 \overrightarrow{M A}-3 \overrightarrow{M B}=\overrightarrow{0}$
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải thích các bước giải:
a) Kẻ đường kính BF.
Ta có: AH⊥BC,CF⊥BC⇒AH//CFAH⊥BC,CF⊥BC⇒AH//CF
Lại có AF⊥AB,CH⊥AB⇒AF//CHAF⊥AB,CH⊥AB⇒AF//CH
⇒AHCF⇒AHCF là hình bình hành.
⇒−−→AH=−−→FC⇒AH→=FC→.
Lại có OIOI là đường trung bình của tam giác BCF nên −→OI=12−−→FCOI→=12FC→
Vậy −−→AH=−−→FC=2−→OIAH→=FC→=2OI→.
b) Ta có: −−→OH=−−→OA+−−→AH=−−→OA+2−→OI=−−→OA+−−→OB+−−→OCOH→=OA→+AH→=OA→+2OI→=OA→+OB→+OC→
c) Do GG là trọng tâm tam giác ABC nên−−→OA+−−→OB+−−→OC=3−−→OG⇒−−→OG=13(−−→OA+−−→OB+−−→OC)=13−−→OHOA→+OB→+OC→=3OG→⇒OG→=13(OA→+OB→+OC→)=13OH→
Vậy ba điểm O,H,GO,H,G thẳng hàng.
???????????????????????????????????????????????????????????????
b) Ta có :
\(IB=2IC\Leftrightarrow IB=2\left(IB+BC\right)\Leftrightarrow-IB=2BC\Leftrightarrow BI=2BC\)
\(JC=-\frac{1}{2}JA\Leftrightarrow JB+BC=-\frac{1}{2}\left(JB+BA\right)\)
\(\Leftrightarrow\frac{3}{2}JB=-\frac{1}{2}BA-BC\Leftrightarrow JB=-\frac{1}{3}BA-\frac{2}{3}BC\)
\(\Rightarrow BJ=\frac{1}{3}BA+\frac{2}{3}BC\)
\(\Rightarrow IJ=BJ-BI=\frac{1}{3}BA+\frac{2}{3}BC-2BC=\frac{1}{3}BA-\frac{4}{3}BC\)
\(KA=-KB\Leftrightarrow KB+BA=-KB\Leftrightarrow2KB=-BA\)
\(\Rightarrow2BK=BA\Leftrightarrow BK=\frac{1}{2}BA\)
\(\Rightarrow JK=BK-BJ=\frac{1}{2}BA-\frac{2}{3}BC=\frac{1}{6}BA-\frac{2}{3}BC\)
\(=\frac{1}{2}\left(\frac{1}{3}BA-\frac{4}{3}BC\right)=\frac{1}{2}IJ\)
Vậy \(I,J,K\)thẳng hàng
TK
gọi I là điểm thỏa mãn 2vt IA-3vt IB=vt 0
có 2 vecto MA - 3 vecto MB = vecto 0
<=>2vt MI+2vt IA -3vt MI-3vt IB=vt 0
<=>-vt MI=vt0
<=> vt IM= vt 0
<=> M trùng với I