Cho tam giác ABC có AB = AC. Trên đường vuông góc với AC tại C lấy D sao cho B, D nằm khác phía đối với AC. Gọi K là giao điểm của đường thẳng qua B vuông góc với AB và đường thẳng qua trung điểm M của CD vuông góc với AD. Chứng minh KB = KD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,x-1/2=y-2/3=z-3/4
theo tính chất dãy tỉ số bằng nhau, ta có:\
x-1/2=y-2/3=z-3/4=2x-2/4=3y-6/9=2x-2+3y-6-z+3/4+9-4
=(2x+3y-z)-(2+6-3)/9=95-5/9=10
Suy ra x-1=20; y-2=30; z-3=40
=> x=21;y=32;z=43
b,|1-2x|+|2-3y|+|3-4z|=0
Ta có |1-2x|>=0; |2-3y|>=0; |3-4z|>=0
=>|1-2x|+|2-3y|+|3-4z|>=0
mà theo đề bài |1-2x|+|2-3y|+|3-4z|=0
Suy ra 1-2x=0 và 2-3y=0 và 3-4z=0
=> x=1/2;y=2/3;z=3/4
c,x+y=x:y=5*(x-y)
từ x+y=5*(x-y)
=> x+y=5x-5y
=>-4x=-6y
=> x/y=3/2
mà x/y=x+y=3/2
lại có x/y=5*(x-y)=3/2
=>x-y=3/10
Suy ra x=(3/2+3/10):2=9/10
y=(3/2-3/10):2=3/5
Vậy................
a. \(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\left(-3,2\right)+\frac{2}{5}\right|\)\(\Leftrightarrow\left|x-\frac{1}{3}\right|=\left|-\frac{16}{5}+\frac{2}{5}\right|-\frac{4}{5}\)\(\Leftrightarrow\left|x-\frac{1}{3}\right|=\left|-\frac{14}{5}\right|-\frac{4}{5}\)\(\Leftrightarrow\left|x-\frac{1}{3}\right|=\frac{14}{5}-\frac{4}{5}\)\(\Leftrightarrow\left|x-\frac{1}{3}\right|=2\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{3}=2\\x-\frac{1}{3}=-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{3}\\x=-\frac{5}{3}\end{cases}.}\)
Vậy \(x\in\left\{-\frac{5}{3};\frac{7}{3}\right\}.\)
b. \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)\(\Leftrightarrow\left(x-7\right)^{x+1}-\left(x-7\right)^{x+1}\times\left(x-7\right)^{10}=0\)\(\Leftrightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\Leftrightarrow\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}.}\)Xét 2 trường hợp:
- \(\left(x-7\right)^{x+1}=0\)\(\Leftrightarrow x-7=0\Leftrightarrow x=7.\)
- \(1-\left(x-7\right)^{10}=0\Leftrightarrow\left(x-7\right)^{10}=1\Leftrightarrow\left(x-7\right)^{10}=\left(\pm1\right)^{10}\)\(\Leftrightarrow\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=8\\x=6\end{cases}.}}\)
Vậy \(x\in\left\{6;7;8\right\}.\)
a) M(2;-3)
Ta có hàm số : y= ax+3 => -3 = a×2 +3
=> a×2 = -6 => a= -3
b) N(-1;6)
x=-1 => y = ax +3 => y = (-3) ×(-1) +3 = 3 +3 =6
Vậy N(-1;6) thuộc đồ thị của hàm số y=ax +3
P(1;3)
x=1 => y=ax +3 => y = (-3) ×1 +3 = (-3) +3 =0
Vậy P(1;3) ko thuộc đồ thị của hàm số y= ax +3
Q(-2;9)
x=-2 => y= ax+3 => y = (-3) ×(-2) +3 = 6+3 =9
Vậy Q(-2;9) thuộc đôt thị của hàm số y = ax +3