Cho hình tròn tâm O , lấy 3 điểm A , B , C bất kỳ trên đường tròn sao cho \(\widehat{AOB}=\widehat{BOC}=\widehat{COA}\). Kẻ các đường thẳng x , y , z tương ứng và vuông góc với các cạnh OA ; OB ; OC . Ba đường cắt nhau tại ba điểm X , Y , Z. Chứng minh \(\Delta XYZ\)cân .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta sẽ chứng minh tồn tại các số tự nhiên m,p sao cho :
96 000 ... 000 + a + 15p < 97 000 ... 000
M chữ số 0 M chữ số 0
Tức là \(96\frac{a}{10^m}\)+ \(\frac{15p}{10^m}\)\(< 97\left(1\right)\)
Gọi a + 15 là số có k chữ số 10kl + 15 < 10k
=> \(\frac{1}{10}\)\(\le\frac{a}{10^k}\)+ \(\frac{15p}{10^k}\). Theo (2)
Ta có : x1 < 1 và \(\frac{15}{10^k}\)< 1
Cho n nhận lần lượt các giá trị 1;3;4;....; các giá trị nguyên của xn tăng dần, mỗi lần tăng không quá 1 đơn vị, khi đó [ xn sẽ trải qua các giá trị 1,2,3. Đến 1 lúc ta có [xp] = 96. Khi đó 96xp tức là \(96\frac{a}{10^k}\)+ \(\frac{15}{10^k}\)< 97. Bất đẳng thức (1) đợt chứng minh.
\(B=\frac{2cosa-sina}{cosa+2sina}=\frac{2-tana}{1+2tana}=\frac{2-2+\sqrt{3}}{1+2\left(2-\sqrt{3}\right)}=\frac{\sqrt{3}}{5-2\sqrt{3}}\)
PS: Mấy cái như điều kiện xác định thì bạn tự làm nhé.
Theo BĐT Cauchy-Schwarz:
\(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+z+x+x+y}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\ge\frac{4}{2}=2\)
Đảng thức xảy ra khi và chỉ khi x = y = z = 4/3
Xét 3 tứ giác OAXC ; OBYA ; OBZC có :
X + XAO + OCX + AOC = 3600 (Tứ giác OAXC)
Y + OAY + AOB + OBY = 3600 (Tứ giác OBYA)
Z + OCZ + COB + OBZ = 3600 (Tứ giác OBZC)
Dựa vào dữ kiện các góc bằng nhau , ta suy ra
Góc X = Góc Y = Góc Z
=> Tam giác XYZ đều
biết đăng làm chi