K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2018

Tìm GTNN

a/ \(A=4x^2+7x+13=\left(4x^2+7x+\frac{49}{16}\right)+\frac{159}{16}=\left(2x+\frac{7}{4}\right)^2+\frac{159}{16}\ge\frac{159}{16}\)

b/ \(B=5-8x+x^2=\left(x^2-8x+16\right)-11=\left(x-4\right)^2-11\ge-11\)

c/ \(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\)

15 tháng 6 2018

@alibaba nguyễn giúp mình với

15 tháng 6 2018

x(2+4x)-x(4x-5)-5x

=x(2+4x-4x+5)-5x

=7x-5x

=2x

mà x= -2

\(\Rightarrow\)x(2+4x)-x(4x-5)-5x=2x=2.2=4

KL:....................

15 tháng 6 2018

Ta thấy rằng:

1^3 + 2^3 = 1 + 8 = 9 = 3^2 = (1 + 2)^2

1^3 + 2^3 + 3^3 = 1 + 8 + 27 = 36 = 6^2 = (1 + 2 + 3)^2

1^3 + 2^3 + 3^3 + 4^3 = 1 + 8 + 27 + 64 = 100 = 10^2 = (1 + 2 + 3 + 4)^2

Vì thế ta có phát biểu:

Tổng các lập phương từ 1 đến n luôn là số chính phương và:

\(1^3+2^3+3^3+...+n^3=\left(\frac{n.\left(n+1\right)}{2}\right)^2\)

Thì áp dụng vào, ta có:

\(A=1^3+2^3+3^3+...+99^3=\left(1+2+...+98+99\right)^2⋮B\)

Vì thế, A sẽ chia hết cho B nên số dư là 0

15 tháng 6 2018

\(3^{2^{1930}}=3^{2.2^{1929}}=9^{2^{1929}}\equiv2^{2^{1929}}\left(mod7\right)\)

Ta có : \(2^{1929}=2^{1928}.2=4^{964}.2\equiv2\left(mod3\right)\)

Do đó \(2^{1929}\) có dạng \(2^{1929}=3k+2\)  \(\left(k\in N\right)\)

\(\Rightarrow2^{2^{1929}}=2^{3k+2}=8^k.4\equiv4\left(mod7\right)\)

Hay \(3^{2^{1930}}\equiv4\left(mod7\right)\)

Vậy \(3^{2^{1930}}\) chia \(7\) dư \(4\)

15 tháng 6 2018

Gọi I là giao điểm 

Lấy điểm M bất kì trong tứ giác ABCD

Ta có: \(MA+MC\ge AC\)

\(MB+MD\ge BD\)

nên \(MA+MB+MC+MD\ge AC+BD\)( có giá trị không đổi )

Để MA + MB + MC + MD đạt giá trị nhỏ nhất thì: 

\(MA+MB+MC+MD=AC+BD\Leftrightarrow"="MA+MC\ge AC\)\(\Rightarrow M\in AC\)

Tương tự xảy ra \("="\Leftrightarrow MB+MD\ge BD\Rightarrow M\in BD\)

Nên M trùng O

Vậy......................

15 tháng 6 2018

ta có AM+MC> AC(bđt tam giác)

(dấu = xảy ra khi M thuộc AC)      (1)

ta lại có BM+MD> BD  (bđt tam giác)

(dấu = xảy ra khi M thuộc BD)           (2)

lấy (1)+(2) suy ra: AM+MC+BM+MD> AC+BD

và đạt giá trị nhỏ nhất khi :AM+MC+BM+MD=AC+BD

vậy M nằm ở giao điểm AC và BD

15 tháng 6 2018

Dùng bất đẳng thức tam giác bạn ơi