K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2017

H A B C D E F G P Q M a) A,H,E,D nằm trên đường tròn đường kính AD vì góc AHD và AED vuông. 

b) Hai tam giác vuông AHP và PED đồng dạng vì có góc AHP = góc PED = 90 độ; góc APH = góc DPE vì đối đỉnh.

Vậy \(\frac{HA}{PA}=\frac{DE}{DP}\)

Nên HA.DP = PA.DE 

30 tháng 5 2017

\(\left(2x^2-3x+1\right)\left(2x^2+5x+1\right)=9x^2\)

\(\Leftrightarrow4x^4+4x^3+2x+1=20x^2\)

\(\Leftrightarrow4x^4+4x^3-20x^2+2x+1=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)\left(x\left(2x+5\right)+1\right)=9x^2\)

\(\Leftrightarrow4x^4+4x^3-11x^2+2x+1=9x^2\)

\(\Leftrightarrow x=1-\frac{1}{\sqrt{2}}\)

\(\Leftrightarrow x=1+\frac{1}{\sqrt{2}}\)

\(\Leftrightarrow x=-\frac{3}{7}-\frac{\sqrt{7}}{2}\)

\(\Rightarrow x=\frac{\sqrt{7}}{2}=-\frac{3}{2}\)

30 tháng 5 2017

\(\left(2x^2-3x+1\right)\left(2x^2+5x+1\right)=9x^2\)

\(\Leftrightarrow4x^4+4x^3+2x+1=20x^2\)

\(\Leftrightarrow4x^4+4x^3+2x+1=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)\left(2\left(2x+5\right)+1\right)=9x^2\)

15 tháng 7 2020

1 2 1 2 3 4 B I C O A O'

a) Theo tính chất hai tiếp tuyến cắt nhau ta được IA = IB, IA = IC .

Tam giác ABC có đường trung tuyến \(AI=\frac{1}{2}BC\)nên là tam giác vuông

Vậy \(\widehat{BAC}=90^o\left(đpcm\right)\)

b) Theo tính chất hai tiếp tuyến cắt nhau ta có IO, IO' là các tia phân giác của hai góc kề bù AIB, AIC nên :

\(\widehat{OIO'}=\widehat{OIA}+\widehat{O'IA}=\frac{1}{2}\widehat{AIB}+\frac{1}{2}\widehat{AIC}=\frac{1}{2}\left(\widehat{AIB}+\widehat{AIC}\right)\)

Vậy : \(\widehat{OIO'}=90^o\)

c) \(\Delta OIO'\) vuông tại A có IA là đường cao nên theo hệ thức giữa cạnh và đường cao ta có:

    IA2 = AO.AO' = 9 . 4 = 36

=> IA = 6 ( cm )

Vậy BC = 2 . IA = 2 . 6 = 12 (cm)

2 tháng 2 2018

a) Hai tam giác vuông ABO và ACO có chung cạnh huyền AO nên A, B, O, C cùng thuộc đường tròn đường kính AO.

Vậy tứ giác ABOC là tứ giác nội tiếp.

b) Ta thấy ngay \(\Delta ABD\sim\Delta AEB\left(g-g\right)\)

\(\Rightarrow\frac{AB}{AE}=\frac{AD}{AB}\Rightarrow AE.AD=AB^2\)

Xét tam giác vuông ABO có BH là đường cao nên áp dụng hệ thức lượng ta có:

\(AH.AO=AB^2\)

Suy ra AD.AE = AH.AO

c) Ta có \(\widehat{PIK}+\widehat{IKQ}+\widehat{P}+\widehat{Q}=360^o\)

\(\Rightarrow2\left(\widehat{PIO}+\widehat{P}+\widehat{OKQ}\right)=360^o\)

\(\Rightarrow\widehat{PIO}+\widehat{P}+\widehat{OKQ}=180^o\)

Mặt khác \(\widehat{PIO}+\widehat{P}+\widehat{IOP}=180^o\)

\(\Rightarrow\widehat{IOP}=\widehat{OKQ}\Rightarrow\Delta PIO\sim\Delta QOK\)

\(\Rightarrow\frac{IP}{PO}=\frac{OQ}{KQ}\Rightarrow PI.KQ=PO^2\)

Sử dụng bất đẳng thức Cô-si ta có:

\(IP+KQ\ge2\sqrt{IP.KQ}=2\sqrt{OP^2}=PQ\)

26 tháng 8 2020

acje cho hỏi 2 tam giác đồng dạng ở câu b là góc nào í chỉ ro rõ cho e với ạk

29 tháng 5 2017

câu a: khi m= 2 => y=2x+2

y y=2x+2 x -1 2 0

với x=0=> y =2

với y=0 =>x -1

câu b : y = xm+2 cắt ox,oy lần lượt tại A,B mà tam giác OAB cân tại O nên OB=OA \(OA^2=OB^2\)

Y X 0 A B

Với x=0=>y=2 => A(0,2) => \(0A=\sqrt{0^2+2^2}=2\)

Với y=0=> x= \(x=\frac{-2}{m}\)nên \(B\left(\frac{-2}{m},0\right)\) ,\(OB=\sqrt{\frac{4}{m^2}+0^2}=\sqrt{\frac{4}{m^2}}\)

theo giả thiết OA=OB nên \(\sqrt{\frac{4}{m^2}}=\sqrt{4}\Leftrightarrow m^2=1\Leftrightarrow\orbr{\begin{cases}m=1\\m=-1\end{cases}}\)

29 tháng 5 2017

ai giup mik vs!

29 tháng 5 2017

có \(\Delta^'=\left(m+1\right)^2-2m-1=m^2\) phương trình có hai nghiệm khi \(\Leftrightarrow\Delta^'=m^2>0\Leftrightarrow m\ne0\)

TH1:

\(\orbr{\begin{cases}x_1=1\\x_2=2m+1\end{cases}}\) => \(\left(2m+1\right)=1\Leftrightarrow m=0\)loại

TH2

\(\orbr{\begin{cases}x_1=2m+1\\x_2=1\end{cases}}\)=>\(\left(2m+1\right)^2=1\Leftrightarrow4m^2+4m=0\Leftrightarrow4m+1=0\Leftrightarrow m=\frac{-1}{4}\)

29 tháng 5 2017

\(\frac{x^2}{\sqrt{5}}-2\sqrt{5}=0\\ \frac{x^2}{\sqrt{5}}=2\sqrt{5}\\ \frac{x^2\sqrt{5}}{\sqrt{5}}=2\sqrt{5}.\sqrt{5}\\ x^2=10\\ x=+-\sqrt{10}\)

2)\(\sqrt{25\left(2x+1\right)^2}=0\\ 5\left(2x+1\right)=0\\ x=\frac{-1}{2}\)

29 tháng 5 2017

\(\sqrt{9\left(x-1\right)}=21\)

\(\Leftrightarrow9\left(x-1\right)=441\)

\(\Leftrightarrow x-1=49\)

\(\Leftrightarrow x=50\)

Vậy x = 50

b) \(\sqrt{3}x+\sqrt{3}=\sqrt{12}+\sqrt{27}\)

\(\Leftrightarrow\left(x+1\right)\sqrt{3}=2\sqrt{3}+3\sqrt{3}\)

\(\Leftrightarrow\left(x+1\right)\sqrt{3}=\left(2+3\right)\sqrt{3}\)

\(\Leftrightarrow x+1=5\)

\(\Leftrightarrow x=4\)

Vậy x = 4

29 tháng 5 2017

\(\sqrt{9\left(x-1\right)}=21\\9\left(x-1\right)=21^2\\x-1=49\\ x=48 \)\(\sqrt{3}x+\sqrt{3}=2\sqrt{3}+3\sqrt{3}\\ 0=\sqrt{3}\left(2+3-1-x\right)\\ 0=\sqrt{3}\left(4-x\right)\\ x=4\\ \)

30 tháng 5 2017

a) \(\sqrt{\frac{\left(165-124\right)\left(165+124\right)}{164}}=\sqrt{\frac{41.289}{164}}=\sqrt{\frac{289}{4}}=\frac{17}{2}\)

b) tương tự ý a

c) \(\left(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\right)^2=7+4\sqrt{3}+7-4\sqrt{3}-2.\sqrt{7+4\sqrt{3}}.\sqrt{7-4\sqrt{3}}\)

\(=14-2\sqrt{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)

\(=14-2\sqrt{49-48}\)

\(=14-2.1=12\)

\(\Rightarrow\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}=\sqrt{12}=2\sqrt{3}\)