Cho x,y > 0.Chứng minh rằng: \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\) (không được dùng Cauchy-Schwarz)
Tìm x thuộc R sao cho \(x^n< x^{n+1}\left(n\inℕ\right)\) hay \(\left(n\inℕ^∗\right)\) gì đó,chẳng nhớ nx!
P/s:Bài này bt làm r,đăng cho vui
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời :
Mk là con gái nha . Ko đăng câu hỏi lih tih ( mk cx chơi fb nhưng nick bj hack r )
=3^x.3 + 3^x.3^2 + 3^x.3^3 +...+ 3^x.3^100
=3^x . ( 3+3^2+3^3+3^4+...+3^100)
=3^x .( (3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+...+ (3^97+3^98+3^99+3^100)
=3^x . ( 120 + 3^4 .(3+3^2+3^3+3^4) +...+ 3^96 (3+3^2+3^3+3^4)
=3^x . ( 120+ 3^4. 120+...+3^96.120)
=3^x . 120 . (1+3^4+...+3^96)
chia hết cho 120( đây là cách giải lớp 6)
\(B=\left(-5\right)^0+\left(-5\right)^1+\left(-5\right)^2+\left(-5\right)^3+...+\left(-5\right)^{2017}\)
\(\Leftrightarrow-5B=\left(-5\right)^1+\left(-5\right)^2+\left(-5\right)^3+\left(-5\right)^4+...+\left(-5\right)^{2018}\)
\(\Leftrightarrow-5B-B=\left(-5\right)^{2018}-\left(-5\right)^0\)
\(\Leftrightarrow-6B=\left(-5\right)^{2018}-1\)
\(\Leftrightarrow B=\frac{\left(-5\right)^{2018}-1}{-6}\)
Bạn ơi vì sao ở dòng 3 lại là (-5)^2017 - (-5)^0 vậy??
a/ Xét tam giác MNC có:
I trung điểm MN
K trung điểm MC
Vậy IK là đường trung bình của tam giác MNC
=> IK = 1/2 NC (1)
Mặt khác, xét tam giác MCB có:
K trung điểm MC
J trung điểm BC
Vậy KJ là đường trung bình tam giác MCB
=> KJ =1/2 BM (2)
mà BM = CN (gt) (3)
Từ (1), (2) và (3) => IK = KJ
=> Tam giác IKJ cân tại K
Lại có IK // NC (tính chất đường trung bình trong tam giác)
=> góc KIJ = góc CEJ (đồng vị) (4)
KJ // BM (tính chất đường trung bình trong tam giác)
=> góc KJI = ADJ (so le trong) (5)
mà góc KIJ = góc KJI (tam giác IKJ cân tại K) (6)
Từ (4), (5), (6) => góc ADE = góc AED
=> Tam giác ADE cân tại A (đpcm)
b/ Ko biết làm ^^
c/ Ko biết làm ^^
bạn kia bt làm rồi đăng làm gì? :((